DRAFT Analysis of Brownfield Cleanup Alternatives

Trees Atlanta 825 Warner St SW, Atlanta, Fulton County, Georgia

September 24, 2020

Prepared for: City of Atlanta EPA Cooperative Agreement BF-00D59517-0

DRAFT Analysis of Brownfields Cleanup Alternatives

Prepared for:City of Atlanta68 Mitchell Street SWAtlanta, Georgia 30303EPA Cooperative Agreement BF-00D59517-0

and

Trees Atlanta 225 Chester Avenue, SE Atlanta, Georgia 30316

Project Name: DRAFT Analysis of Brownfields Cleanup Alternatives Tees Atlanta 825 Warner Street SW Atlanta, Fulton County, Georgia

Submission Date: September 24, 2020

Table of Contents

1	Introd	luction		1
2	Backg	ground		3
	2.1	Site De	escription	3
	2.2	Site Hi	istory	3
	2.3	Enviro	nmental Impact	4
3	Regio	nal Setti	ng and Site Characterization	5
	3.1	Physio	ographic Setting	5
	3.2	Site Hy	ydrogeology	5
4	Previo	ous Asse	essment Activities	6
	4.1	Phase	II ESA and Asbestos Survey, EPS, June 2006	6
	4.2	Phase	I ESA, OTIE, April 2019	6
	4.3	Phase	II ESA, ERTI, May 2019	7
	4.4	PPCA	P, ERTI, June 2019	8
5	Expos	sure Ana	lysis	11
	5.1	Evalua	ation	11
	5.2	Exposi	ure Pathways	11
6	Clean	up Objec	ctives / Applicable Regulations	12
	6.1	Cleanu	up Objectives	12
	6.2	Cleanu	up Standards	12
	6.3	Histori	c Preservation	13
	6.4	Davis-	Bacon Act	13
7	Brow	nfield Cle	eanup Alternatives	14
	7.1	Alterna	ative 1 – No Action	14
	7.2	Alterna	ative 2 – Engineering Controls: Capping	14
		7.2.1	Technological Description	14
		7.2.2	Effectiveness	14
		7.2.3	Implementability	14
		7.2.4	Cost	14
	7.3	Alterna	ative 3 – Excavation, Disposal, and Backfill (Removal)	15
		7.3.1	Technological Description	15
		7.3.2	Effectiveness	15
		7.3.3	Implementability	15
		7.3.4	Cost	15
8	Recor	nmendeo	d Cleanup Alternative	16
9	Scheo	lule		17
10	Certif	ication		18
11	Refer	ences		19

Figures

- Figure 1 USGS Topographic Map
- Figure 2 Site Boundary Map
- Figure 3 Tax Map

Appendices

Appendix A Excerpts of Previous Environmental Reports

1 Introduction

This Analysis of Brownfield Cleanup Alternatives (ABCA) has been prepared for the property located at 825 Warner Street SW in Atlanta, Fulton County, Georgia, on behalf of the property owner, Trees Atlanta. To facilitate the environmental corrective action at the referenced property, Trees Atlanta has applied for sub-grant funding under the City of Atlanta's Brownfield Revolving Loan Fund (BRLF) grant. The site, further referred to as the "Subject Site/Property", and consists of one parcel totaling approximately 2.9 acres. The Fulton County parcel ID # is 17 010600090070.

The Subject Site is located within the Southwest Atlanta, Georgia Topographic Quadrangle of the US Geological Survey (USGS) 7.5-minute series map as shown in **Figure 1**. The Subject Site is currently developed with one approximately 23,000 square foot warehouse building and paved parking lot. A site boundary map is included as **Figure 2**. According to Fulton County Tax records, the subject site is currently owned by Tree Atlanta, Inc. A Tax Map is included as **Figure 3**.

The intended reuse of the Subject Site by Trees Atlanta is to demolish the existing building and develop an urban ecology center on the property. The proposed redevelopment will include a two-story building for offices and an education center, a meadow, outdoor landscaped areas, and parking.

Several due diligence environmental assessment have been completed on the property since April 2019 prior to Trees Atlanta acquiring the property. The information obtained during these assessment activities was utilized to guide site activities with respect to potential environmental impairment and liabilities associated with the Subject Property due to contamination by hazardous substances, controlled substances, or petroleum products on or near the site. Based on the findings of these investigations, prior to acquisition, Trees Atlanta submitted the Subject Property into the Georgia Environmental Protection Division (EPD) Brownfield Cleanup Program in July 2019.

The City of Atlanta obtained a Brownfields Assessment Grant from the U.S. EPA (Grant No. BF-00D59517-0) in May 2017. This grant is funding the development of this and other documents associated with the environmental management of lead impacted soil.

This ABCA has been prepared to demonstrate to the EPA that appropriate cleanup methods have been evaluated and will be applied for the contaminated soil located at the 825 Warner Street property, as required by the Terms and Conditions of the BRLF Program. In addition to meeting EPA requirements for an ABCA, this document is also designed to meet the requirements for the management of contaminated soil as outlined by the Georgia EPD Brownfield Cleanup Program approved corrective action plan documents.

Further, this document has been prepared to programmatically ready the site for cleanup and future redevelopment. Cleanup activities will be funded in part through a subgrant via the City of Atlanta's EPA BRLF Grant. Public notice will be given in accordance with the requirements of the BRLF, and this document will be available for public review and comment prior to implementation.

Community outreach is anticipated to be conducted with the Trees Atlanta board meetings and with the City of Atlanta Neighborhood Planning Unit (NPU) S. Programmatic documents will be made available to the public on the City of Atlanta's brownfield website

(<u>https://www.atlantaga.gov/government/departments/city-planning/office-of-zoning-development/brownfield-program</u>) for public review and comment prior to implementation.

Per EPA grant requirements, this ABCA includes:

- Information about the site and contamination issues (e.g., exposure pathways, identification of contaminant sources, etc.), cleanup standards, applicable laws, alternatives considered, and the proposed remediation approach.
- A discussion of the effectiveness, implementability, and cost of the cleanup methods considered.
 - \circ No action
 - Implementation of institutional controls such as capping or covering, fencing, or barring access to contaminated soil
 - Excavation and removal of contaminated soil

2 Background

2.1 Site Description

The Subject Site consists of one parcel totaling approximately 2.9 acres that are classified in Fulton County records as "I2 – Heavy Industrial." The Subject Site is developed with an approximate 23,000 square foot warehouse building, asphalt parking lot, and undeveloped land. An abandoned railroad spur borders the Subject Property to the east and southeast, with a rail height dock on the northeast side of the building for rail access. An abandoned grain silo is located adjacent to the eastern side of the building. The building is currently leased to various artist which use it as various studio space. A Site Boundary Map is included as **Figure 2**.

2.2 Site History

The history of the Subject Property was determined based on information obtained during the completion of a Phase I Environmental Site Assessment (ESA) completed by Oneida Total Integrated Enterprises (OTIE) in April 2019. Historical records show the Subject Property being developed with four small structures in 1932. Four smaller structures were on the western side of the property. One of the smaller structures was identified as an office and another smaller building was used for storage. A larger structure on the eastern side of the Subject Property was identified as being used for steel working and the occupant was identified as The F.E. Golian Company. A railroad spur was identified near the northern boundary of the Subject Property. By 1950, the Subject Property was developed with two structures. A smaller building was located on the southwest corner of the Subject Property and a larger building on the north central portion. The larger building was used as "Cold Storage" and "Wholesale Produce". A 1962 Sanborn map indicates that the Subject Property was developed with a large building on the eastern property boundary. The building was labeled as "The F.P. Golian Company Structural & Ornamental Steel". A 1978 Sanborn map labeled the use of the building as "Wholesale Meat".

Tax assessor records indicate that the existing warehouse building was constructed in 1952. A review of City directories dating back to 1952 indicate that the property was occupied by C.L. Fain Company which operated a wholesale produce company in the 1950's. In the early 1960's to sometime in the 1970's, Armour & Company operated a wholesale meat company on the property. Moms Bakery operated a commercial bakery on the property from 1994 until 2010-2014. The Artist's studio has been in operation for the past eleven years.

According to the Fulton County Tax Assessor records, the subject property was acquired by the current owner Trees Atlanta, Inc. from Jabobar Properties, LLC on July 16, 2019.

Surrounding properties were developed residential or undeveloped land in 1927. The adjacent property to the north has been used for records storage and archiving. Properties to the east have historically been developed residential. The old State Farmer's Market on the adjacent property to the west from 1940-1957. Adjacent southern properties have been developed with commercial buildings used to stage roll-off containers and Conex boxes.

2.3 Environmental Impact

Recent soil and groundwater investigations on the Subject Property have identified petroleum aromatic hydrocarbon (PAHs) and metal impacts, likely originating from the historic steel working and industrial use. Lead impacts were identified by Environmental Technology Resources, Inc. (ETRI) in 2019 above the Georgia Notification Concentrations (NCs) on the Subject Property.

3 Regional Setting and Site Characterization

3.1 Physiographic Setting

The site is located in the Piedmont Physiographic Province. The Piedmont topography is characterized by low, rolling hills in the north and a broad rolling upland or plateaus in the south. The Piedmont is comprised of metamorphic and igneous rocks that are overlain by regolith of varying thickness. The regolith beneath the subject site is composed of semi-consolidated to unconsolidated saprolite (weathered bedrock), soil, and other surficial deposits.

3.2 Site Hydrogeology

Based on the USGS topographic map, surface water from the Subject Site is inferred to flow to the northeast. The subject site is located in the Low Groundwater Pollution Susceptibility Class (Georgia Geological Survey, 1992). Lithology descriptions from the site indicate that the shallow subsurface is composed primarily of sandy micaceous silts and clays (weathered saprolite). Groundwater flow is unknown, but based on topography would likely flow to the northeast. During previous investigations, groundwater was encountered between 18 to 24 feet below ground surface (bgs).

4 Previous Assessment Activities

Numerous investigations, soil and groundwater investigations, a Georgia EPD corrective action plans, and other assessment have been completed on the Subject Site since 2006. The following summarizes relevant previous assessment reports.

4.1 Phase II ESA and Asbestos Survey, EPS, June 2006

A Phase II Environmental Site Assessment and limited asbestos survey were conducted on behalf of Jabobar Properties, LLC in June 2006. The Phase II ESA and asbestos survey were completed by Environmental Planning Specialists, Inc. (EPS). Seven soil boring were installed to depths ranging from 28 to 30 feet below land surface (bls). Groundwater samples were collected and analyzed for the presence of volatile organic compounds (VOC's). No VOCs were detected above laboratory detection limits in any of the groundwater samples.

The asbestos survey included the collection and analyses of 26 bulk samples which included wallboard, joint compound, ceiling tile, sealants and roof coverings. Asbestos was identified in black asphalt shingles around the perimeter of an upper crawl space, black/white flashing around a roof vent and black/white patching cement on asphalt.

4.2 Phase I ESA, OTIE, April 2019

In April 2019, a Phase I Environmental Site Assessment (ESA) was completed on the subject property by Oneida Total Integrated Enterprises. The Phase I ESA was completed for the U.S. Environmental Protection Agency – Region 4 and Trees Atlanta as part of a Targeted Brownfields Assessment. Oneida Total Integrated Enterprises prepared a report entitled: *Phase I Environmental Site Assessment Report 825 Warner Street, SW Atlanta, Fulton County, Georgia EPA TDD No. 0006/OT-06-017* dated April 2019.

The Phase I ESA identified the following recognized environmental conditions on the subject property.

- The regulatory database report identifies the property at 717 Warner Street on the US Brownfields database. This property was identified on the southeast corner of the subject property. The property description is "former drum storage facility". The Phase I report noted that a Phase II investigation conducted in 2006 did not identify any volatile organic compounds in groundwater.
- The subject property was identified on the SPILLS database due to an incident that occurred on August 27, 2010. The report indicates that an unknown amount of oil was discharged into a storm drain from any unknown source.

The following off-site RECs were identified in the Phase I ESA Report.

- A 1978 Sanborn map indicates that the adjacent property had transformers which may have contained PCBs
- A US Brownfields site located at 1121 Allene Avenue is located adjacent to the southeast side of the subject property. The adjacent property was identified as formerly having a drum storage facility.
- Champion International, which is located 500 feet south of the subject property, was identified as a LUST site

- ESB, Inc., which is located 0.294 miles from the subject property was identified as a State Hazardous Waste Site due to the release of lead
- Bernstein Scrap Metal is located approximately 500 feet to the northwest. This property was identified as having a release of Lead and is listed as a non-hazardous waste site.
- Four historical auto sites are located within 586 feet of the subject property.

Based on the findings from the Phase I, OTIE recommended that a Phase II ESA be completed. Excerpt of the OTIE Phase I ESA is included as **Appendix A**.

4.3 Phase II ESA, ERTI, May 2019

On May 7, 2019, ETRI and its subcontractor, GeoLab Drilling mobilized to the site to install the soil borings. Three soil borings were installed on the property. Soil boring B1 was located on the southwest side of the property. Soil boring B2 was installed east of the southeast corner of the building and soil boring B3 was installed on the northeast side of the property and adjacent to an outside rail loading dock area. The soil borings were installed using Geoprobe® direct push technology (DPT) drill rig. Each soil boring was advanced to a depths of 35 feet. Soil boring locations are identified in Figure 2.

Soil samples collected from boring B1 at a depth of 3-4 feet, B2 at 7-10 feet and B3 at 2-3 feet were analyzed for Resource Conservation and Recovery Act (RCRA) Metals. The soil samples collected from B1 at 5-10 feet, B2 at 7-10 feet and B3 at 2-3 feet were analyzed for volatile organic compounds (VOCs) and polyaromatic hydrocarbons (PAHs). Samples VOC's were analyzed using EPA Method SW8260B, PAHs using EPA Method SW 8270D and RCRA Metals were analyzed using Method SW 6010D and 7471B. The results of the analyses of the soil samples are summarized in Table 1.

Parameter	B1-3-4'	B1-5-10'	B2-7-10'	B3-2-3'	GA EPD NCs
Metals					
Arsenic	BRL	NA	27.9	15.4	41
Barium	63.9	NA	276	218	500
Cadmium	3.7	NA	28.9	7.3	39
Chromium	47.5	NA	31.9	42.6	1,200
Lead	39.2	NA	5,880	109	400
Mercury	BRL	NA	BRL	BRL	17
Selenium	BRL	NA	BRL	BRL	36
Silver	BRL	NA	BRL	BRL	10
Volatile Organic Compounds	NA	BRL	NA	NA	Chemical Specific
Naphthalene	NA	BRL	0.0086	NA	100
PAHs	NA	BRL	NA	NA	Chemical Specific
Fluoranthene	NA	BRL	6.57	NA	500
Phenanthrene	NA	BRL	6.05	NA	110
Pyrene	NA	BRL	5.58	NA	500

Table 1 Summary of Soil Sample Analyses – May 7, 2019 825 Warner Street, Atlanta, Georgia

Notes:

Highlight Yellow – Above NC

BRL – Below Laboratory Reporting Limit NA – Not Analyzed Results in mg/Kg, ppm

After completing the soil borings, a groundwater sampling tool consisting of a telescopic four-foot length of wire mesh screen was inserted into a drive point rod. The depth to groundwater was determined to be approximately 24.22 feet in boring B1, 28.6 feet in B2 and 27 feet in B3.

A groundwater sample was collected by lowering a disposable length of polyethylene tubing into the hollow rods and connecting the tubing to a peristaltic pump at the surface. Groundwater was then extracted using the peristaltic pump. The samples were placed in 40-mL vials containing hydrochloric acid as a preservative and one-liter amber jars provided by the laboratory. The samples were then placed on ice for additional preservation.

The groundwater samples from borings B1, B2 and B3 were analyzed for volatile organic compounds using EPA Method SW 8260B. Groundwater samples collected from B2 and B3 were also analyzed for polyaromatic hydrocarbons using Method SW 8270D. Table 2 is a summary of the analyses of the groundwater samples.

Parameter	B1	B2	B3	GA EPD NCs
Volatile Organic	BRL	BRL	BRL	
Compounds				
Naphthalene	BRL	BRL	0.0029	400
PAHs	NA	BRL	BRL	Chemical Specific

Table 2
Summary of Groundwater Sample Analyses - May 7, 2019
825 Warner Street, Atlanta, Georgia

Notes:

BRL – Below Laboratory Reporting Limit

NA – Not Analyzed

Results in mg/L, ppm

Excerpts of the Phase II ESA are included as Appendix A.

4.4 PPCAP, ERTI, June 2019

ETRI on behalf of the property owner, Trees Atlanta, submitted a Prospective Purchaser Corrective Action Plan (PPCAP) in June 2019 to the Georgia EPD Brownfield Group. This PPCAP outlined the previous investigations and the proposed cleanup plan to address the lead impacted soil to the non-residential Type 3 Risk Reduction Standards (RRS). Part of the PPCAP was to further delineate the impacts identified in the May 2019 Phase II ESA. Excerpts of the PPCAP are included as **Appendix A**.

Additional soil investigations were conducted on June 21, 2019. The purpose of these investigations was to define the extent of contamination discovered during the May 2019 investigations and install a temporary monitoring well in the area of highest lead in soils to determine if groundwater has been impacted.

Ten additional soil borings were installed on the property. Each soil boring was installed to a depth of 25 feet. Soil samples were collected from the upper one foot and below one foot in each boring. The surface samples were analyzed for RCRA Metals. Deeper samples were analyzed for total Lead. The results are summarized in Table 3, and compared to the EPD standard non-residential Type 3 RRS and approved site specific non-residential Type 4 RRS.

Parameter	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver
Type 3 RRS (<1'/>1')	30/41	1,650/1,650	39/39	1,200/ 1,200	400/400	17/6.28	36/36	96.6/96.6
Type 4 RRS (<1'/>1')					1,050/ 1,278			
Sample ID								
B2-6-12"	7.99	291	BRL	24.2	1,390	0.315	BRL	BRL
B2-23-25'	NA	NA	NA	NA	17.7	NA	NA	NA
B4-6-12"	10.5	110	BRL	40.2	435	BRL	BRL	BRL
B4-6.5-7'	NA	NA	NA	NA	1,410	NA	NA	NA
B4-10'	NA	NA	NA	NA	23.5	NA	NA	NA
B5-6-12"	6.28	370	BRL	21.1	988	0.236	BRL	2.83
B5-7-8'	NA	NA	NA	NA	1,510	NA	NA	NA
B5-11-12'	NA	NA	NA	NA	16.6	NA	NA	NA
B6-6-12"	2.75	134	BRL	43.2	110	BRL	BRL	BRL
B6-7-8'	NA	NA	NA	NA	28	NA	NA	NA
B6-10-11'	NA	NA	NA	NA	13	NA	NA	NA
B7-6-12"	18.4	101	BRL	44.4	242	0.266	BRL	BRL
B7-5-6'	NA	NA	NA	NA	76.9	NA	NA	NA
B7-10-11'	NA	NA	NA	NA	19.9	NA	NA	NA
B8-6-12"	10.6	76.5	BRL	39.8	127	0.126	BRL	BRL
B8-6-7'	NA	NA	NA	NA	1,250	NA	NA	NA
B8-9-10'	NA	NA	NA	NA	10.7	NA	NA	NA
B9-6-12"	22.1	51.4	BRL	36.2	24.5	0.192	BRL	BRL
B9-7-8'	NA	NA	NA	NA	848	NA	NA	NA
B11-6-12"	3.23	49.9	BRL	59.1	28.8	0.129	BRL	BRL
B11-8-9'	NA	NA	NA	NA	92.3	NA	NA	NA
B11-10-11'	NA	NA	NA	NA	17.1	NA	NA	NA
B12-6-12"	8.29	199	BRL	7.85	6.2	0.336	BRL	BRL
B12-8-9'	NA	NA	NA	NA	35.2	NA	NA	NA
B12-10-11'	NA	NA	NA	NA	10	NA	NA	NA
B13-6-12"	11.7	371	BRL	16.8	196	BRL	BRL	BRL
B13-8-9'	NA	NA	NA	NA	20.1	NA	NA	NA
B13-10-11'	NA	NA	NA	NA	11.6	NA	NA	NA
B14-6-12"	6.97	120	BRL	32.1	111	BRL	BRL	BRL
B14-6-7'	NA	NA	NA	NA	18.7	NA	NA	NA
B14-10-11'	NA	NA	NA	NA	14.3	NA	NA	NA

Table 3 Summary of Soil Sample Analyses – June 21, 2019 825 Warner Street, Atlanta, Georgia

Notes: Yellow Highlight – Above Type 3 Risk Reduction Standards (RRS) Red Highlight – Above Type 4 RRS BRL – Below Reporting Level NA – Not Analyzed Results in mg/Kg, ppm Type 3 and 4 RRS – less than 1 ft./greater than 1 ft.

A temporary one-inch groundwater monitoring wells was installed in boring B2. A groundwater sample was collected from TMW-1 on June 5, 2019. Prior to sampling groundwater, the temporary well was purged a minimum of three well volumes using peristaltic pump. The groundwater sample was submitted to Analytical Environmental Services, Inc. of Atlanta, Georgia for analyses. The groundwater samples were analyzed for the presence of total and dissolved lead using Method SW 6010. No detectable concentrations of lead were detected in the groundwater sample.

5 Exposure Analysis

5.1 Evaluation

Preparation of an ABCA requires an evaluation be made as to the possible corrective actions and their respective costs to remedy effected areas. Not all remedies are physical or chemical and may include other types of remedies such as institutional controls (e.g. restriction on residential development recorded on the deed). Excess public risk requires four factors, all of which must be present to produce excess risk from contaminants at the site. These are:

- A chemical with sufficient toxicity to do harm (whether acute or chronic);
- A sufficient quantity of the chemical to be toxic and do harm;
- A receptor on which to do harm; and
- A pathway by which a sufficient amount of the contaminant can actually reach a receptor and do harm.

Corrective actions to remedy affected areas rarely eliminate all chemicals of concern or hazardous building materials. It is generally the intent to remove/abate, treat or immobilize/encapsulate impacted media or hazardous building materials to levels producing an acceptable risk to human health and the environment. The degree of acceptable risk has to be determined by the public through legislative and regulatory processes. This has been accomplished by the development and implementation of rules at the Federal, State, and Local levels.

5.2 Exposure Pathways

In order for possible contaminants of concern to do harm to public health or the environment, they must occupy a point of exposure accessible to the population at risk. Compounds to which populations are not currently, nor in the future likely to be exposed via complete exposure pathways do not constitute a probable condition of elevated risk.

The four potential receptor populations evaluated are:

- The Trees Atlanta employees who access the Subject Site;
- Residents persons who reside near the Subject Site;
- Construction workers during the potential redevelopment; and
- Future patrons of the end use development.

Based on the historical assessment activities, there is lead soil contamination identified throughout the Subject Site.

For each of the potential receptors being considered, the applicable exposure pathway of concern is direct contact with hazardous materials via incidental ingestion, dermal contact, and/or inhalation of particulates.

6 Cleanup Objectives / Applicable Regulations

This ABCA document evaluates several alternatives for site remediation and provides a recommended strategy for site remediation. The recommended cleanup objectives for the Subject Site will be protective of human health and the environment and comply with all applicable federal, state, and local regulations.

6.1 Cleanup Objectives

The first and foremost cleanup objective is the protection of human health and the environment. This objective will be completed by removing the impacted soils located throughout the site to below the industrial Type 4 RRS, or to limit direct access to contaminated soil through the use of cap, cover, or fencing. The Subject Site end use is anticipated to be greenspace or a public park.

Additionally, the Georgia Brownfield Program affords a prospective purchaser liability protection for groundwater impacts. While no dissolved groundwater impacts have been identified at the Subject Site in previous assessment, if encountered they will not be the direct responsibility of the prospective purchaser.

6.2 Cleanup Standards

The Georgia EPD Brownfields Program will oversee the cleanup, and base the cleanup standards in accordance with the acceptable corrective action for RRS under HSRA (Chapter 391-3-19.07(4)(a through e). The essential features for corrective action compliance require the following conditions be met:

- Free product must be removed to a practicable extent.
- Soil remaining in place under Type 1, 2, 3 and 4 risk reduction standards shall not exhibit hazardous waste characteristics of ignitability, corrosivity, or reactivity as defined in 40 CFR 261 Subpart C and the sum of regulated substance concentrations in air filled pore space shall not exceed 1000 parts per million (by weight or volume).
- The corrective action shall not allow exposure to contaminants that will affect the food chain, damage soils or biota, adversely impact vegetation or wildlife, or accumulate vapors in buildings which pose a threat to human health or the environment.
- The corrective action shall protect Georgia surface waters by adhering to the criterion listed in the Georgia Rules and Regulations for Water Quality Control at Rule 391-3-6-.03(5), or if concentration values are not provided in said Rules, concentrations at levels that exhibit acute toxicity to aquatic life as demonstrated pursuant to protocols established by the Director (Chapter 391-3-19-.07(4)(c)).
- If the detection limit and/or background concentration for a regulated substance is greater than the concentration specified in any risk reduction standard, the greater of the detection limit or background shall be used for determining compliance with the applicable risk reduction standard. Detection limit in this case implies the non-fraudulent use of any approved analytical test method that is appropriate for the particular application. Background shall be determined for samples taken from media that are unaffected by a release.

The guidelines have promulgated five types of risk reduction standards that can be used to display compliance regarding corrective action measures. The standards are described below:

- Type 1 risk reduction standards are based on standardized exposure assumptions to ensure that the regulated substance poses no significant risk to residential properties.
- Type 2 risk reduction standards are based on site-specific exposure assumptions to ensure that the regulated substance poses no significant risk to residential properties.
- Type 3 risk reduction standards are based on standardized exposure assumptions to ensure that the regulated substance poses no significant risk to non-residential properties.
- Type 4 risk reduction standards are based on site-specific exposure assumptions to ensure that the regulated substance poses no significant risk to non-residential properties.
- Type 5 risk reduction standards that involve the use of controls such as caps, slurry walls, fences, etc. to minimize risk when it is not appropriate to apply Type 1-4 standards.

The Trees Atlanta property is a non-residential property, thus Type 3 and 4 criteria would be applicable to the site. The Type 4 RRS for lead in soil are calculated using EPA's Adult Lead Model (ALM).

The Type 4 soil direct-contact for lead using central tendency values for a commercial industrial worker (surface soils) is 1,050 mg/Kg and for an excavation worker (subsurface soils) is 1,278 mg/Kg. These values are calculated in accordance with Rule 391-3-19-.07(9)(d)2.(i) and 3(i).

6.3 Historic Preservation

No historic structures or features are noted on the Subject Site. In order to verify no historic structure or features will be impacted, the City of Atlanta is planning to submit a Section 106 National Historic Preservation Act (NHPA) form to the Georgia Historic Preservation Division (HPD) for their review and determination.

6.4 Davis-Bacon Act

All soil remediation work funded by the City of Atlanta's EPA BRLF grant funds must comply with the US Department of Labor (DOL) Davis-Bacon Act (DBA), which requires payment of prevailing wage rates for cleanup activities. The budget and schedule will take this into account. More details regarding the Davis-Bacon Act can be found on the DOL's website: https://www.dol.gov/whd/regs/compliance/whdfs66.pdf.

Cardno, as the Qualified Environmental Professional (QEP) for the City of Atlanta under their EPA BRLF grant, will be responsible for overseeing Davis-Bacon Act requirements on behalf of the City of Atlanta.

7 Brownfield Cleanup Alternatives

The following section presents a discussion of the cleanup objectives, alternatives screening process and rationale, alternative analysis, and presents a likely budget for the proposed cleanup. The primary cleanup objectives are to mitigate the impacted soils throughout the Subject Site to protect public health and the environment.

7.1 Alternative 1 – No Action

The No Action alternative is included as a baseline comparison to other remedial alternatives. The No Action alternative assumes no action is taken and is not a valid option for the site, given the hazards to human health and the environment.

7.2 Alternative 2 – Engineering Controls: Capping

7.2.1 <u>Technological Description</u>

Engineering controls involve capping or placing a cover over contaminated materials. Caps do not cleanup the contaminated material, instead they isolate the contaminated media and keep it in place so it will not come into contact with people or the environment. Capping is considered an engineering control for impacts that remain on-site; therefore, some form of institutional control (deed restriction) is required to document and record this engineering technology. With this approach, additional costs would be incurred to implement a long-term maintenance plan to assure the public and regulatory authority of the effectiveness, integrity, and compliance of the engineering control.

7.2.2 <u>Effectiveness</u>

If designed appropriately, engineering controls can be effective in 1) stopping rainwater from seeping through contaminated material and preventing contamination migration into the groundwater or surface water features, and 2) keeping people and animals from direct contact with the impacted material.

Either two feet of clean soil cover, or additional impermeable pavement would be considered as an engineering control to prevent direct exposure. Once the additional cap and cover is implemented, an Engineering Control Maintenance Plan (ECMP) would be developed and institutional controls would be implemented to document the engineering controls and ECMP process.

7.2.3 Implementability

Currently, the areas of impact is in an area of asphalt pavement. A cap design can range from the simple placement of two feet of clean soil cover over the impacted media to the construction of a multi-layer / multi-component cap system. For paved areas, the cap typically consists of a top layer that is asphalt or concrete to stabilize the Subject Site, absorb moisture, and prevent erosion. Additionally, engineering controls (storm water drainage) would need to be implemented to direct surface water away from the impacted areas.

7.2.4 <u>Cost</u>

A multi-layer capping system in the soil impacted areas on-site would range from approximately \$50,000 to \$100,000, depending on the design. Additional funds would be needed to implement the engineering and institutional controls for the subject site.

While only limited portions of the Subject Site would be subject to capping, the overall effectiveness, the redevelopment plan, and the long-term maintenance required to assure integrity of the cap render further considerations of capping impracticable.

7.3 Alternative 3 – Excavation, Disposal, and Backfill (Removal)

7.3.1 <u>Technological Description</u>

This alternative includes the excavation, stockpiling, disposal of impacted soils, and backfilling with clean soils. In this alternative, additional sampling may be required to confirm the lateral and vertical depths of impacted soil has been reached.

7.3.2 <u>Effectiveness</u>

Removal of contaminated materials from the Subject Site is typically the most effective type of remediation, regardless of contaminant type.

7.3.3 Implementability

Many factors affect the implementability of a soil excavation project. Generally, excavation is limited to materials that are unconsolidated and can be removed using backhoes, excavators, and similar equipment. Source removal of the impacted soils is proposed by excavating vertically and horizontally based on the extended delineation sampling conducted by ETRI. Access must be available to bench, remove, and stock pile the impacted soils. Once removed, the impacted soils will be properly disposed of and the excavation will be backfilled with clean soil.

Given the limited areas and depths of impact, undeveloped nature of the Subject Site, and accessibility, soil removal would be readily implementable.

7.3.4 <u>Cost</u>

The estimated volume for removal is approximately, but potentially greater than 630 cubic yards (CY). Costs are typically separated based on the following:

- Excavation & stockpiling;
- Transportation & disposal; and
- Backfilling and compaction

Based on the size and amount of materials (~563 CY), the cost ranges from \$80,000 to \$100,000. This range is based the soil sampling conducted by ETRI, which indicates all soils will be characterized as non-hazardous waste and can be disposed of at a non-hazardous Subtitle D landfill, and receipt of multiple quotes from reliable remediation contractors.

8 Recommended Cleanup Alternative

Based on the desired outcome of the Subject Site, effectiveness of removal strategies, ease of implementability, and overall cleanup goals and objectives, remedial Alternative 3: Removal is the recommended approach.

9 Schedule

It is anticipated that all work will start in November 2020, with completion by the January 2021.

10 Certification

I, Douglas Strait, Professional Engineer (PE) #041500, certify that I currently hold an active license in the State of Georgia and am competent through education and experience to provide the geologic services contained in this report. I further certify that this report was prepared by me or under my direct supervision.

Prepared by:

Douglas Strait, PE Georgia Professional Engineer # 041500

11 References

- Phase I ESA 825 Warner Street SW, Atlanta, GA, Dated April 2019, OTIE
- Phase II ESA 825 Warner Street SW, Atlanta, GA, May June 2019, ETRI
- *Prospective Purchaser Corrective Action Plan* 825 Warner Street SW, Atlanta, GA, dated June 2019, ETRI
- Fulton County Board of Tax Assessors GIS, <u>https://iaspublicaccess.fultoncountyga.gov/maps/mapadv.aspx</u>

Figures

ABCA 825 Warner Street Fulton County, Atlanta, GA Cardno Project: 0002421001

Figure 2 Site Boundary Map Source: GoogleEarth

ABCA 825 Warner Street Fulton County, Atlanta, GA Cardno Project: 0002421001

Figure 3 Tax Map Source: Fulton County GIS

Appendix A Excerpts from Previous Environmental Reports

ETRI

Environmental Technology Resources, Inc.

May 29, 2019

Ms. Connie Veates Co-Executive Director and Chief Operating Officer Trees Atlanta 225 Chester Avenue, SE Atlanta, Georgia 30316

Re: Phase II Environmental Site Assessment Report 825 Warner Street Atlanta, Fulton County, Georgia

Dear Ms. Veates:

As you know, Oneida Total Integrated Enterprises was retained by the U.S. EPA Region IV and Trees Atlanta in April 2019 to complete a Phase I Environmental Site Assessment of the property located at 825 Warner Street in Atlanta, Fulton County, Georgia ("subject property"). The location of the property is shown in **Figure 1**.

The results of the Phase I ESA identified recognized environmental conditions associated with the prior use of the subject property along with a documented release on off-site properties. The Phase I ESA identified the following recognized environmental conditions on the subject property.

- The regulatory database report identifies the property at 717 Warner Street on the US Brownfields database. This property was identified on the southeast corner of the subject property. The property description is "former drum storage facility". The Phase I report noted that a Phase II investigation conducted in 2006 did not identify any volatile organic compounds in groundwater.
- The subject property was identified on the SPILLS database due to an incident that occurred on August 27, 2010. The report indicates that an unknown amount of oil was discharged into a storm drain from any unknown source.

The following off-site RECs were identified in the Phase I ESA Report.

- A 1978 Sanborn map indicates that the adjacent property had transformers which may have contained PCBs.
- A US Brownfields site located at 1121 Allene Avenue is located adjacent to the southeast side of the subject property. The adjacent property was identified as formerly having a drum storage facility.
- Champion International, which is located 500 feet south of the subject property, was identified as a LUST site.
- ESB, Inc., which is located 0.294 miles from the subject property was identified as a State Hazardous Waste Site due to a release of Lead.
- Bernstein Scrap Metal is located approximately 500 feet to the northwest. This property was identified as having a release of Lead and is listed as a non-hazardous waste site.
- Four historic auto sites are located within 586 feet of the subject property.

Based on the findings from the Phase I, Oneida Total Integrated Enterprises recommended that a Phase II ESA be

completed.

METHODS AND RESULTS OF SOIL AND GROUNDWATER INVESTIGATIONS

ETRI initially notify the Utility Protection Center (UPC) to identify underground utilities in the areas that would be investigated. UPC completed the utility locate (Ticket No. 05029-500-041) prior to beginning on-site work.

On May 7, 2019, ETRI and its subcontractor, GeoLab Drilling mobilized to the site to install the soil borings. Three soil borings were installed on the property. Soil boring B1 was located on the southwest side of the property. Soil boring B2 was installed east of the southeast corner of the building and soil boring B3 was installed on the northeast side of the property and adjacent to an outside rail loading dock area. The locations of the soil borings are shown in **Figure 2**.

The soil borings were installed using Geoprobe® direct push technology (DPT) drill rig. The soil borings were advanced to a depth of 35 feet. The soil samples were screened for total volatile organic compounds using a field calibrated MiniRae 3000 - Photoionization Detector (PID). Soil samples were selected for analyses based on discoloration, odors and PID readings. Soil boring logs are included in **Attachment A**.

The samples were submitted to Pace Analytical Services, LLC of Peachtree Corners, Georgia for analyses. The soil samples collected from boring B1 at a depth of 3-4 feet, B2 at 7-10 feet and B3 at 2-3 feet were analyzed for RCRA Metals. The soil samples collected from B1 at 5-10 feet, B2 at 7-10 feet and B3 at 2-3 feet were analyzed for volatile organic compounds (VOC's) and polyaromatic hydrocarbons (PAHs). Samples VOC's were analyzed using EPA Method SW8260B, PAHs using EPA Method SW 8270D and RCRA Metals were analyzed using Method SW 6010D and 7471B. The results of the analyses of the soil samples are summarized in **Table 1** and are shown in **Figure 2**. The analytical report is included in **Attachment B**.

Parameter	B1-3-4'	B1-5-10'	B2-7-10'	B3-2-3'	GA EPD NC's
Metals		NA			
Arsenic	ND		27.9	15.4	41
Barium	63.9		276	218	500
Cadmium	3.7		28.9	7.3	39
Chromium	47.5		31.9	42.6	1,200
Lead	39.2		5,880	109	400
Mercury	ND		ND	ND	17
Selenium	ND		ND	ND	36
Silver	ND		ND	ND	10
Volatile Organic Compounds	NA	ND		NA	Chemical Specific
Naphthalene		ND	0.0086		100
PAHs	NA	ND			Chemical

Table 1
Summary of Soil Sample Analyses – May 7, 2019
825 Warner Street, Atlanta, Georgia

Parameter	B1-3-4'	B1-5-10'	B2-7-10'	B3-2-3'	GA EPD
					NC's
					Specific
Anthracene		ND	ND		500
Benzo(a)anthracene		ND	ND		5.0
Benzo(a)pyrene		ND	ND		1.64
Benzo(b)fluoranthene		ND	ND		5.0
Benzo(k)fluoranthene		ND	ND		5.0
Benzo(g,h,i) perylene		ND	ND		500
Chrysene		ND	ND		5.0
Dibenzo(a,h)anthracene		ND	ND		5.0
Fluoranthene		ND	6.57		500
Fluorene		ND	ND		360
Indeno(1,2,3-cd)pyrene		ND	ND		5.0
1-Methylnaphthalene		ND	ND		NR
2-Methylnaphthalene		ND	ND		NR
Naphthalene		ND	ND		100
Phenanthrene		ND	6.05		110
Pyrene		ND	5.58		500

Notes:

ND – Not Detected NA – Not Analyzed

Results in mg/Kg, ppm

After completing the soil borings, a groundwater sampling tool consisting of a telescopic four-foot length of wire mesh screen was inserted into a drive point rod. Given that a dual tube system of soil sample collection was being used, the wire mesh screen was advanced to the bottom of the outer MacroCore and the MacroCore was retracted by five feet exposing the screen to groundwater. The depth to groundwater was determined to be approximately 24.22 feet in boring B1, 28.6 feet in B2 and 27 feet in B3.

A groundwater sample was collected by lowering a disposable length of polyethylene tubing into the hollow rods and connecting the tubing to a peristaltic pump at the surface. Groundwater was then extracted using the peristaltic pump. The samples were placed in 40-mL vials containing hydrochloric acid as a preservative and one-liter amber jars provided by the laboratory. The samples were then placed on ice for additional preservation.

The groundwater samples were delivered to Pace Analytical Services, LLC of Peachtree Corners, Georgia for analyses. The groundwater samples from borings B1, B2 and B3 were analyzed for volatile organic compounds using EPA Method SW 8260B. Groundwater samples collected from B2 and B3 were also analyzed for polyaromatic hydrocarbons using Method SW 8270D. Table 2 is a summary of the analyses of the groundwater samples.

Table 2Summary of Groundwater Sample Analyses – May 7, 2019825 Warner Street, Atlanta, Georgia

Parameter	B1	B2	B3	GA EPD NC's
Volatile Organic Compounds	ND	ND		
Naphthalene	ND	ND	0.0029	400
PAHs	NA	ND	ND	Chemical Specific

Notes:

ND – Not Detected NA – Not Analyzed

Results in mg/L, ppm

After reviewing the results of the sample analyses and specifically the high concentration of Lead in soil boring B2 at a depth of 7 - 10 feet, additional testing was performed to determine the leachability of this soil. The leachability of the soil was determined using the Synthetic Precipitation Leaching Procedure (EPA). The SPLP is applicable for materials where the leaching potential due to normal rainfall is to be determined. Instead of the landfill leachate simulating acetic acid mixture, nitric and sulfuric acid are utilized in an effort to simulate the acid rains resulting from nitic and sulfuric oxides.

The B2-7-10 ft. sample was analyzed by Analytical Environmental Services, Inc. of Atlanta, Georgia. The SPLP analyses was performed using EPA SW-846, Method 1312. The results of the SPLP Lead analyses determined that the leachability of sample B2-7-10 ft. is 0.168 mg/L. The drinking water standard for Lead is 0.015 mg/L.

DISCUSSION OF RESULTS

Three soil borings were installed as part of a Phase II ESA on the property located at 825 Warner Street in Atlanta, Georgia. The following conclusions can be made regarding the results of the Phase II ESA.

- A high concentration of total Lead (5,880 mg/Kg) was detected in a sample collected from soil boring B2 at a depth of 7-10 feet. Fluoranthene, Phenanthrene and Pyrene were also detected in this sample. The Lead leachability of this sample, as determined by the SPLP procedure, was determined to be 0.168 mg/L
- Naphthalene was detected in a groundwater sample collected from boring B3 at a concentration of 0.0029 mg/L.
- The results of the Phase II ESA determined that off-site properties have had little, if any impact to the environmental conditions of the property.
- The August 2010 spill event does not appear to have had an impact on groundwater on the subject property.

Under the Georgia Hazardous Site Response Act, notification to the Georgia EPD Hazardous Site Response and Remediation Program is required when concentrations of contaminants in soils exceed notification concentrations. Petroleum releases are exempt from notification under HSRA. The concentration of Lead detected in the soil sample collected from boring B2 is greater than the Georgia EPD HSRA Notification concentrations.

Notification is also required when groundwater contamination exceeds drinking water standards. The concentration of Naphthalene in groundwater in B3 is below the EPA Maximum Contaminant Level (MCL) and notification would not be required.

Once notified, the Georgia EPD will evaluate the information provided in the release notification using the Reportable Quantity Screening Method (RQSM). Some of the factors that are used in evaluating a release to soil include the toxicity of the chemical released, accessibility to the property and the distance to the nearest residence or day care center. Some of the factors that are used in evaluating a release to groundwater include the toxicity of the chemical released to the nearest private or public drinking water well.

If you have any questions related to the report, please give me a call at (770) 888-8181.

Sincerely, ENVIRONMENTAL TECHNOLOGY RESOURCES, INC.

Thomas Refarger

Thomas R. Harper Technical Director

Attachments

19-064 - Phase 2 ESA Report

Figures

Source: U.S. Geologic Survey

ETRI Environmental Technology Resources, Inc. 4780 Ashford Dunwoody Rd. Suite A-456 Atlanta, Georgia 30338

Scale: Not to Scale

FIGURE 1 SITE LOCATION MAP 825 Warner Street Atlanta, Georgia Project Number 19-064

ETRI

Environmental Technology Resources, Inc. 4780 Ashford Dunwoody Rd. Suite A-456 Atlanta, Georgia 30338

Source: Bing.com/maps Soil Boring Location					
Project No.	Scale	Date			
19-064	Not to Scale	2018			

FIGURE 2 SOIL BORING LOCATIONS AND ANALYTICAL RESULTS 825 Warner Street Atlanta, Georgia
Attachment A – Soil Boring Logs

SOIL BORING LOG

Project:	825 Warne	er Street			Location: Southwest Side of Property
Date Ins	talled: May	7, 2019			Elevation: TOC:
Drilling N	lethod: Dir	ect Push			Total Depth of Boring: 35.0 feet
Drilling C	Company: (GeoLab Dri	lling		Boring: B1
Driller: R	andy		0		Depth to Water From TOC:
Sampler	Type: Con	tinuous - D	irect Push		Geologist:
	Sample Number	Blows/6"	PID/FID (ppm)	USCS (sym)	
			0		Reddish-brown silty LOAM
5			0 1.1		Reddish-brown clay LOAM with dark gray mottling Reddish-brown sandy silt LOAM with gravel
10			0.1		Reddish-brown sandy SILT
15			0.2		Reddish-brown/off-white SAPROLITE Reddish-brown/brown/off-white/dark gray SAPROLITE
20			0		Reddish-brown/tan-brown clayey SILT to 21.5 feet Reddish-brown/brown/off-white/dark gray SAPROLITE
25			0		Groundwater at 24.22 feet Reddish-brown/daark gray SAPROLITE to 29.5 feet
30			0		Off-white quartz rock at 29.5 - 30 feet Gray-brown sandy SILT to 32 feet Off-white/gray-brown SAPROLITE
35					Boring terminated at 35 feet

SOIL BORING LOG

Project:	825 Warne	r Street			Location: East of SE Corner of Building
Date Ins	talled: May	7, 2019			Elevation: TOC:
Drilling N	lethod: Dir	ect Push			Total Depth of Boring: 35.0 feet
Drilling C	Company: C	GeoLab Dri	lling		Boring: B2
Driller: R	andy				Depth to Water From TOC:
Sampler	Type: Con	tinuous - D	irect Push		Geologist:
	Sample Number	Blows/6"	PID/FID (ppm)	USCS (sym)	
					Asphalt and Crusher
			0.1		Brown/dark brown silty LOAM
5			0.1 0		Brown sandy silt LOAM and gravel Reddish-brown/gray-brown silty LOAM
			13.1		Dark gray material resembling cinders - 7-10 feet
10			0		Reddish-brown clayey silt LOAM
15			0		Tan-brown/reddish-brown/off-white SAPROLITE
20			0		Tan-brown/gray-brown/dark gray SAPROLITE
25			0		Gray-brown/orange-brown/off-white SAPROLITE
					Groundwater at 28.75 feet
30			0		Gray-brown/orange-brown/off-white SAPROLITE
35					Boring terminated at 35 feet

SOIL BORING LOG

Project:	825 Warne	r Street			Location: Northeast Side of Property
Date Ins	talled: May	7, 2019			Elevation: TOC:
Drilling N	lethod: Dir	ect Push			Total Depth of Boring: 35.0 feet
Drilling C	company: C	GeoLab Dri	lling		Boring: B3
Driller: R	andy				Depth to Water From TOC:
Sampler	Type: Con	itinuous - D	irect Push		Geologist:
	Sample Number	Blows/6"	PID/FID (ppm)	USCS (sym)	
<u> </u>					Gravel and Crusher Run to 1.5 feet
5			0.4 0 0		Gray-brown silty LOAM Reddish-brown silty clay LOAM Reddish-brown sandy silt LOAM Reddish-brown clay LOAM
10			0		Reddish-brown clay LOAM
15			0		Tan-brown/reddish-brown clayey SILT to 18 feet
20			0		Tan-brown/gray/dark gray/off-white SAPROLITE
25			0		
30			0		Groundwater at 29 feet Gray-brown/gray/off-white/orange-brown SAPROLITE
35					Boring terminated at 35 feet

Attachment B – Laboratory Analytical Report

Pace Analytical Services, LLC 110 Technology Parkway Peachtree Corners, GA 30092 (770)734-4200

May 16, 2019

Tom Harper Environmental Technology Resources, Inc 4780 Ashford Dunwoody Road Suite A-456 Atlanta, GA 30338

RE: Project: 825 Warner Street 19-064 Pace Project No.: 2618256

Dear Tom Harper:

Enclosed are the analytical results for sample(s) received by the laboratory on May 07, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

San m. ma

Sakina Mckenzie sakina.mckenzie@pacelabs.com (770)734-4200 Project Manager

Enclosures

cc: Mr. Tom Harper Rebecca Thornton, Pace Analytical Atlanta

Pace Analytical Services, LLC 110 Technology Parkway Peachtree Corners, GA 30092 (770)734-4200

CERTIFICATIONS

Project: 825 Warner Street 19-064 Pace Project No.: 2618256

Atlanta Certification IDs

110 Technology Parkway Peachtree Corners, GA 30092 Florida DOH Certification #: E87315 Georgia DW Inorganics Certification #: 812 Georgia DW Microbiology Certification #: 812 North Carolina Certification #: 381 South Carolina Certification #: 98011001 Virginia Certification #: 460204

SAMPLE SUMMARY

Project: 825 Warner Street 19-064 Pace Project No.: 2618256

Lab ID	Sample ID	Matrix	Date Collected	Date Received
2618256001	B1-5-10'	Solid	05/07/19 08:27	05/07/19 13:46
2618256002	B2-7-10'	Solid	05/07/19 09:30	05/07/19 13:46
2618256003	B3-2-3'	Solid	05/07/19 10:44	05/07/19 13:46
2618256004	B1	Water	05/07/19 08:55	05/07/19 13:46
2618256005	B2	Water	05/07/19 10:25	05/07/19 13:46
2618256006	B3	Water	05/07/19 11:24	05/07/19 13:46
2618256007	Trip Blank	Water	05/07/19 00:00	05/07/19 13:46
2618256008	B1-3-4'	Solid	05/07/19 09:05	05/07/19 13:46

SAMPLE ANALYTE COUNT

Project: 825 Warner Street 19-064

Pace Project No.: 2618256

Lab ID	Sample ID	Method	Analysts	Analytes Reported
2618256001	B1-5-10'	EPA 8270D	MKI	21
		EPA 8260B	JHG	73
		Pace SOP #204	M10	1
2618256002	B2-7-10'	EPA 6010D	AAP	7
		EPA 7471B	DRB	1
		EPA 8270D	MKI	21
		EPA 8260B	JHG	73
		Pace SOP #204	M10	1
2618256003	B3-2-3'	EPA 6010D	AAP	7
		EPA 7471B	DRB	1
		Pace SOP #204	M10	1
2618256004	B1	EPA 8260B	LIH	64
2618256005	B2	EPA 8270D	MKI	21
		EPA 8260B	LIH	64
2618256006	B3	EPA 8270D	MKI	21
		EPA 8260B	LIH	64
2618256007	Trip Blank	EPA 8260B	LIH	64
2618256008	B1-3-4'	EPA 6010D	AAP	7
		EPA 7471B	DRB	1
		Pace SOP #204	M10	1

Project: 825 Warner Street 19-064

Pace Project No.: 2618256

Results reported on a "dry weight" basis and are adjusted for percent motiture, sample size and any dilutions. Analyzed CAS No. Qual 2070 MSSV PAH Analytical Method: EPA 82700 Preparation Method: EPA 3546 Analyzed CAS No. Qual Acenaphthem ND Up/kg 377 1 OF/31/91 90:00 67/41/90:035 83:32.9 Acenaphtheme ND Up/kg 377 1 OF/31/91 90:00 67/41/90:035 83:32.9 Acenaphtheme ND Up/kg 377 1 OF/31/91 90:00 67/41/90:036 80:32.9 Banzo(a)pyrene ND Up/kg 377 1 OF/31/91 90:00 67/41/90:036 60:53.8 Banzo(a)pyrene ND Up/kg 377 1 OF/31/91 90:00 67/41/90:036 62:65.3 Banzo(a)pyrene ND Up/kg 377 1 OF/31/91 90:00 67/41/90:036 62:64.4 Chysene ND Up/kg 377 1 OF/31/91 90:00 67/41/90:036 62:64.9 Dibarer/a, hyanhracene ND	Sample: B1-5-10'	Lab ID: 261	8256001	Collected: 05/07/1	9 08:2	7 Received: 05	5/07/19 13:46 N	latrix: Solid	
Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual 82700 MSSV PAH Analyzed Method: EPA 82700 Preparation Method: EPA 3546 Acenaphthynen ND ug/kg 377 1 65/13/19 19:00 65/14/19 00:36 83-29.4 Acenaphthynen ND ug/kg 377 1 65/13/19 19:00 65/14/19 00:36 65-6-3 Anthracene ND ug/kg 377 1 65/13/19 19:00 65/14/19 00:36 65-6-3 Benzold/jhyrene ND ug/kg 377 1 65/13/19 19:00 65/14/19 00:36 65-7-3 Benzold/jhuomthene ND ug/kg 377 1 65/13/19 19:00 65/14/19 00:36 65/7-3 Benzold/jhuomthene ND ug/kg 377 1 65/13/19 19:00 65/14/19 00:36 65/7-3 Benzold/jhuomthene ND ug/kg 377 1 65/13/19 19:00 65/14/19 00:36 65/7-3 Benzold/jhuomthene ND ug/kg <	Results reported on a "dry weigh	t" basis and are ad	justed for pe	rcent moisture, sa	mple s	size and any dilu	tions.		
Sty PAH Analytical Method: EPA 8270D Preparation Method: EPA 3646 Acenaphthylene ND ug/kg 377 1 05/13/19 10:00 65/14/19 00:36 632.9 Acenaphthylene ND ug/kg 377 1 05/13/19 10:00 05/14/19 00:36 620.96.8 Anthracene ND ug/kg 377 1 05/13/19 10:00 05/14/19 00:36 60-52.3 Benzo(s)/juroanthene ND ug/kg 377 1 05/13/19 10:00 05/14/19 00:36 60-32.4 Benzo(s)/juroanthene ND ug/kg 377 1 05/13/19 10:00 05/14/19 00:36 20-9.2 Benzo(s)/juroanthene ND ug/kg 377 1 05/13/19 10:00 05/14/19 00:36 20-9.2 Benzo(s)/juroanthene ND ug/kg 377 1 05/13/19 10:00 05/14/19 00:36 87-3.7 Benzo(s)/juroanthene ND ug/kg 377 1 05/13/19 10:00 05/14/19 00:36 81-3.7 Benzo(s)/juroanthene ND ug/kg 377 <	Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Acenaphthree ND ugkg 377 1 05/13/19 05/13/19 000 05/14/19 00036 202-98 Acenaphthylene ND ugkg 377 1 05/13/19 1000 05/14/19 0036 202-98 3 Benzo(a)phree ND ugkg 377 1 05/13/19 1000 05/14/19 0036 202-92 3 Benzo(a)phree ND ug/kg 377 1 05/13/19 1000 05/14/19 0036 202-9 3 Benzo(a)phree/lene ND ug/kg 377 1 05/13/19 1000 05/14/19 0036 207-08 3 -10-9 Diberz(a) hanthracene ND ug/kg 377 1 05/13/19 1000 05/14/19 0038 8-73-7 Fluorene ND ug/kg 377 1 05/13/19 1000 05/14/19 0038 8-73-7 Fluorenhene ND ug/kg 377 1 05/13/19 <td>8270D MSSV PAH</td> <td>Analytical Met</td> <td>hod: EPA 827</td> <td>OD Preparation Me</td> <td>ethod: E</td> <td>EPA 3546</td> <td></td> <td></td> <td></td>	8270D MSSV PAH	Analytical Met	hod: EPA 827	OD Preparation Me	ethod: E	EPA 3546			
Acenaptitylene ND ug/kg 377 1 05/13/19 19:00 05/14/19 00:38 208-96-8 Anthracene ND ug/kg 377 1 05/13/19 19:00 05/14/19 00:38 56.55.3 Benzo(g)anthracene ND ug/kg 377 1 05/13/19 19:00 05/14/19 00:38 50.32.8 Benzo(g)(noranthene ND ug/kg 377 1 05/13/19 19:00 05/14/19 00:38 218-01-9 Benzo(g)(noranthene ND ug/kg 377 1 05/13/19 19:00 05/14/19 00:38 218-01-9 Dibenzo(s/f)(noranthene ND ug/kg 377 1 05/13/19 19:00 05/14/19 00:38 218-01-9 Fluoranthene ND ug/kg 377 1 05/13/19 19:00 05/14/19 00:38 91-76 Hotehynapthialene ND ug/kg 377 1 05/13/19 19:00 05/14/19 00:38 91-76 Anthropome Ug/kg 377 1 05/13/19 19:00 05/14/19 00:38 91-76 Hotethynapthialene <td>Acenaphthene</td> <td>ND</td> <td>ug/kg</td> <td>377</td> <td>1</td> <td>05/13/19 19:00</td> <td>05/14/19 00:36</td> <td>83-32-9</td> <td></td>	Acenaphthene	ND	ug/kg	377	1	05/13/19 19:00	05/14/19 00:36	83-32-9	
Anthrisone ND ug/kg 377 1 05/13/19 19:00 05/14/19 00:35 120-12-7 Benzo(a)pyrene ND ug/kg 377 1 05/13/19 19:00 05/14/19 00:35 56.85.3 Benzo(a)pyrene ND ug/kg 377 1 05/13/19 19:00 05/14/19 00:35 205-99-2 Benzo(a)pyrene ND ug/kg 377 1 05/13/19 19:00 05/14/19 00:35 207-08-9 Benzo(a)pyrene ND ug/kg 377 1 05/13/19 19:00 05/14/19 00:35 207-08-9 Chrysene ND ug/kg 377 1 05/13/19 19:00 05/14/19 00:35 86-73-7 Fluoranthene ND ug/kg 377 1 05/13/19 19:00 05/14/19 00:36 81-37 Fluoranthene ND ug/kg 377 1 05/13/19 19:00 05/14/19 00:36 81-37 Fluoranthene ND ug/kg 377 1 05/13/19 19:00 05/14/19 00:38 16-5 Phenanthrene ND ug/kg 377 1 05/13/19 19:00 05/14/19 00:38 16-5 <td>Acenaphthylene</td> <td>ND</td> <td>ug/kg</td> <td>377</td> <td>1</td> <td>05/13/19 19:00</td> <td>05/14/19 00:36</td> <td>208-96-8</td> <td></td>	Acenaphthylene	ND	ug/kg	377	1	05/13/19 19:00	05/14/19 00:36	208-96-8	
Benzo(a)pinthracene ND up/kg 377 1 05/13/19 05/14/19 036 65-65-32 Benzo(b)fluoranthene ND ug/kg 377 1 05/13/19 05/14/19 036 03-24 Benzo(b)fluoranthene ND ug/kg 377 1 05/13/19 05/14/19 036 03-08-9 Benzo(b)fluoranthene ND ug/kg 377 1 05/13/19 05/14/19 036 370-8-9 Chrysene ND ug/kg 377 1 05/13/19 05/14/19 036 57-03 Fluoranthene ND ug/kg 377 1 05/13/19 05/14/19 036 67-47-1 Indeno(1,2,3-cd)pyrene ND ug/kg 377 1 05/13/19 05/14/19 036 68-7-37 Indeno(1,2,3-cd)pyrene ND ug/kg 377 1 05/13/19 05/14/19 03 69-12-0 Puethylnaphthalene ND ug/kg 377 1 05/13/19	Anthracene	ND	ug/kg	377	1	05/13/19 19:00	05/14/19 00:36	120-12-7	
Benzoginjvene ND ujkg 377 1 0/5/13/19 05/14/19 0.50 05/24.14 0.50 05/24.14 0.50 05/24.14 0.50 05/24.14 0.50 05/24.14 0.50 05/24.14 0.50 05/24.14 0.50 05/24.14 0.50 05/24.14 0.50 05/24.14 0.50 05/24.14 0.50 05/14/19 0.50 05/14/19 0.50 05/14/19 0.50 05/14/19 0.50 05/14/19 0.50 05/14/19 0.50 05/14/19 0.50 05/14/19 0.50 05/14/19 0.50 05/14/19 0.50 05/14/19 0.50 05/14/19 0.50 05/14/19 0.50 05/14/19 0.50 05/14/19 0.50 05/14/19 0.50 05/14/19 0.50 <td>Benzo(a)anthracene</td> <td>ND</td> <td>ug/kg</td> <td>377</td> <td>1</td> <td>05/13/19 19:00</td> <td>05/14/19 00:36</td> <td>56-55-3</td> <td></td>	Benzo(a)anthracene	ND	ug/kg	377	1	05/13/19 19:00	05/14/19 00:36	56-55-3	
Benzo(jhluranthene ND ug/kg 377 1 0/5/13/19 000 0/5/14/19 0.036 205-99-2 Benzo(jhluranthene ND ug/kg 377 1 0/5/13/19 0/5/14/19 0.036 19/2-4-2 Chrysene ND ug/kg 377 1 0/5/13/19 0/5/14/19 0.03 27-0.8-9 Fluoranthene ND ug/kg 377 1 0/5/13/19 0/5/14/19 0.03 66-7.3-7 Indeno(1,2,3-cd)pyrene ND ug/kg 377 1 0/5/13/19 0/14/19 0.03 66-7.3-7 Indeno(1,2,3-cd)pyrene ND ug/kg 377 1 0/5/13/19 0/14/19 0.03 65-7.3-7 Indeno(1,2,3-cd)pyrene ND ug/kg 377 1 0/5/13/19 0/14/19 0.03 65-7.3-7 Indeno(1,2,3-cd)pyrene ND ug/kg 377 1 0/5/13/19 0/14/19 0.03 65-7.3-7 Indeno(1,2,3-cd)pyrene ND ug/kg 377 </td <td>Benzo(a)pyrene</td> <td>ND</td> <td>ug/kg</td> <td>377</td> <td>1</td> <td>05/13/19 19:00</td> <td>05/14/19 00:36</td> <td>50-32-8</td> <td></td>	Benzo(a)pyrene	ND	ug/kg	377	1	05/13/19 19:00	05/14/19 00:36	50-32-8	
Benzo(k)Inperviene ND ug/kg 377 1 05/13/19 19:00 05/14/19 00:36 19:1-2-2 Benzo(k)Invaranthene ND ug/kg 377 1 05/13/19 19:00 05/14/19 00:36 207-08- Dibenz(k)Invaranthene ND ug/kg 377 1 05/13/19 19:00 05/14/19 00:36 208-04- Fluoranthene ND ug/kg 377 1 05/13/19 19:00 05/14/19 00:36 807-37- Fluoranthene ND ug/kg 377 1 05/13/19 19:00 05/14/19 00:36 91-2-0 2-MethyInaphthalene ND ug/kg 377 1 05/13/19 19:00 05/14/19 00:36 91-2-0 2-MethyInaphthalene ND ug/kg 377 1 05/13/19 19:00 05/14/19 00:36 91-2-0 Surragets ND ug/kg 377 1 05/13/19 19:00 05/14/19 00:36 126-0-0 2-Fluorobiphenyl (S) 65 % 11-106 1 05/13/19 19:00 05/14/19 00:36 126-0-0	Benzo(b)fluoranthene	ND	ug/kg	377	1	05/13/19 19:00	05/14/19 00:36	205-99-2	
Benzo (huoranthene ND ug/kg 377 1 05/13/19 19:00 05/14/19 00:36 218-01-9 Chrysene ND ug/kg 377 1 05/13/19 19:00 05/14/19 00:36 218-01-9 Dibrar(a, h)anthracene ND ug/kg 377 1 05/13/19 19:00 05/14/19 00:36 8-7-3 Fluoranthene ND ug/kg 377 1 05/13/19 19:00 05/14/19 00:36 8-7-3 Indenol 1, 2, -cd)pyrene ND ug/kg 377 1 05/13/19 19:00 05/14/19 00:36 90-12- 1-Methyinaphthalene ND ug/kg 377 1 05/13/19 19:00 05/14/19 00:36 81-57-6 Naphthalene ND ug/kg 377 1 05/13/19 19:00 05/14/19 00:36 41-56-0 Surrogates ND ug/kg 377 1 05/13/19 19:00 05/14/19 00:36 416-60-0 2-Fluorobiphenyl (S) 65 % 11-156 1 05/13/19 19:00 05/14/19 00:36 416-60-0	Benzo(g,h,i)perylene	ND	ug/kg	377	1	05/13/19 19:00	05/14/19 00:36	191-24-2	
Chrysene ND ug/kg 377 1 05/13/19 19:00 05/14/19 00.36 218-19 Dibenz(a,h)anthracene ND ug/kg 377 1 05/13/19 19:00 05/14/19 00.36 208-44-0 Fluorene ND ug/kg 377 1 05/13/19 19:00 05/14/19 00.36 80-37-7 1.Methylnaphthalene ND ug/kg 377 1 05/13/19 19:00 05/14/19 00.36 91-37-5 2.Methylnaphthalene ND ug/kg 377 1 05/13/19 19:00 05/14/19 00.36 91-37-5 Phenanthrene ND ug/kg 377 1 05/13/19 19:00 05/14/19 00.36 91-37-5 Prene ND ug/kg 377 1 05/13/19 19:00 05/14/19 00.36 91-37-5 Surrogates - - 05/13/19 19:00 05/14/19 00.36 21-60-0 - Strotophenyl (S) 65 % 11-106 1 05/13/19 19:00 05/14/19 00.36 21-60-0 Strotophenyl (S) 65 <	Benzo(k)fluoranthene	ND	ug/kg	377	1	05/13/19 19:00	05/14/19 00:36	207-08-9	
Diberg(a) hjanthracene ND ug/kg 377 1 05/13/19 000 03/24 03/34 Fluoranthene ND ug/kg 377 1 05/13/19 000 05/14/19 00:38 66-7-7 Indenol (1, 2, 3-cd)pyrene ND ug/kg 377 1 05/13/19 000 05/14/19 00:38 69-7-7 1 Methyinaphthalene ND ug/kg 377 1 05/13/19 000 05/14/19 00:38 69-10-0 1 Methyinaphthalene ND ug/kg 377 1 05/13/19 000 05/14/19 00:38 89-10-0 v<3	Chrysene	ND	ug/kg	377	1	05/13/19 19:00	05/14/19 00:36	218-01-9	
Fluorantene ND ug/kg 377 1 05/13/19 00.03 026/14/19 00.33 026/14/19 00.33 026/14/19 00.33 026/14/19 00.33 026/13/19 11.00 05/13/19 11.00 05/13/19 10.00 05/13/19 00.00	Dibenz(a,h)anthracene	ND	ug/kg	377	1	05/13/19 19:00	05/14/19 00:36	53-70-3	
Fluorene ND ug/kg 377 1 05/13/19 05/13/19 00 05/14/19 00:36 87-3-7 Indeno(1,2,3-cd)pyrene ND ug/kg 377 1 05/13/19 05/14/19 00:36 193-39-5 2-Methyinaphthalene ND ug/kg 377 1 05/13/19 05/14/19 00:36 91-5-6 Appthalene ND ug/kg 377 1 05/13/19 05/14/19 00:36 91-2-0.3 Phrene ND ug/kg 377 1 05/13/19 05/14/19 00:36 45-60-3 Surrogates ND ug/kg 377 1 05/13/19 10:0 05/14/19 00:36 45-60-3 2-Fluorobiphenyl (S) 62 % 11-156 1 05/13/19 10:0 05/14/19 00:36 27-6-4-3 2-Fluorobiphenyl (S) 62 % 11-156 1 05/07/19 18:40 05/08/19 01:45 17-0-2-8 Acrolen ND	Fluoranthene	ND	ug/kg	377	1	05/13/19 19:00	05/14/19 00:36	206-44-0	
Indeno(1,2,3-cd)pyrene ND ug/kg 377 1 05/13/19 19:00 05/14/19 00:36 19:39-5 1-Methyinaphthalene ND ug/kg 377 1 05/13/19 19:00 05/14/19 00:36 91-2-0 Amethyinaphthalene ND ug/kg 377 1 05/13/19 19:00 05/14/19 00:36 91-2-0.3 Phenanthrene ND ug/kg 377 1 05/13/19 19:00 05/14/19 00:36 91-20-0.7 v3 Pyrene ND ug/kg 377 1 05/13/19 19:00 05/14/19 00:36 4165-60-0 2-110000 31/19 19:00 05/14/19 00:36 31-60-8 2-1100000 31/19 19:00 05/14/19 00:36 31-60-8 2-11000000 31/19 19:00 05/14/19 00:36 31-60-8 31-60-8 31-60-8 31-60-8 31 05/13/19 19:00 05/14/19 00:36 31-60-8 31	Fluorene	ND	ug/kg	377	1	05/13/19 19:00	05/14/19 00:36	86-73-7	
1-Methylnaphthalene ND ug/kg 377 1 05/(3/19) 19:00 05/(4/19) 00:36 90-12-0.3 2-Methylnaphthalene ND ug/kg 377 1 05/13/19) 19:00 05/14/19) 00:36 91-57-6 Naphthalene ND ug/kg 377 1 05/13/19) 19:00 05/14/19) 00:36 85-01-8 Phenanthrene ND ug/kg 377 1 05/13/19) 19:00 05/14/19) 00:36 85-01-8 Surrogates ND ug/kg 377 1 05/13/19) 19:00 05/14/19) 00:36 4165-60-0 2-Fluorobiphenyl (S) 65 %. 11-156 1 05/13/19) 19:00 05/14/19) 00:36 174-51-0 8260 MSV 5035 Analytical Method: EPA 8260B Preparation Method: EPA 5035 6764-1 Acroleni ND ug/kg 51.3 1 05/07/19 14.40 05/08/19 01:45 177-13-1 Bersene ND ug/kg 5.1 1 05/07/19 18.40 05/08/19 01:45 174-32-5	Indeno(1,2,3-cd)pyrene	ND	ug/kg	377	1	05/13/19 19:00	05/14/19 00:36	193-39-5	
2-Methylnaphthalene ND ug'rkg 377 1 05/13/19 19:00 05/14/19 00:36 91-57-6 Naphthalene ND ug/rkg 377 1 05/13/19 19:00 05/14/19 00:36 91-20-3 Phenanthrene ND ug/rkg 377 1 05/13/19 19:00 05/14/19 00:36 129-00-0 v3 Surrogates ND ug/rkg 377 1 05/13/19 19:00 05/14/19 00:36 129-00-0 v3 Prenohphenyl (S) 65 % 15-126 1 05/13/19 19:00 05/14/19 00:36 121-60-8 P-Terphenyl-d14 (S) 62 % 11-156 1 05/13/19 19:00 05/14/19 00:36 121-60-8 Acctone ND ug/rkg 51.3 1 05/07/19 18:40 05/08/19 01:45 17-62-8 Acrolein ND ug/rkg 51.3 1 05/07/19 18:40 05/08/19 01:45 17-43-2 Bromocharcene ND ug/rkg 51.1 1 05/07/19 18:40 05/08/19 01:45 17-43-2 </td <td>1-Methylnaphthalene</td> <td>ND</td> <td>ug/kg</td> <td>377</td> <td>1</td> <td>05/13/19 19:00</td> <td>05/14/19 00:36</td> <td>90-12-0</td> <td></td>	1-Methylnaphthalene	ND	ug/kg	377	1	05/13/19 19:00	05/14/19 00:36	90-12-0	
Naphthalene ND ug/kg 377 1 05/13/19 19:00 05/14/19 00:36 91-20-3 Phenanthrene ND ug/kg 377 1 05/13/19 19:00 05/14/19 00:36 85-01-8 Pyrene ND ug/kg 377 1 05/13/19 19:00 05/14/19 00:36 4165-60-0 Surrogates ND ug/kg 11-106 1 05/13/19 19:00 05/14/19 00:36 21-60-8 P-Terphenyl-G14 (S) 65 %. 15-126 1 05/13/19 19:00 05/14/19 00:36 21-60-8 P-Terphenyl-G14 (S) 62 %. 11-156 1 05/07/19 18:40 05/08/19 01:45 67-64-1 Acrolein ND ug/kg 51.3 1 05/07/19 18:40 05/08/19 01:45 107-12-8 Acrylonitrile ND ug/kg 51.1 1 05/07/19 18:40 05/08/19 01:45 107-13-1 Benzene ND ug/kg 51.1 1 05/07/19 18:40 05/08/19 01:45 107-13-1 Bromodichoromethane	2-Methylnaphthalene	ND	ug/kg	377	1	05/13/19 19:00	05/14/19 00:36	91-57-6	
Phenanthrene ND ug/kg 377 1 05/13/19 05/14/19 00:03 85-01-8 Pyrene ND ug/kg 377 1 05/13/19 05/14/19 00:03 85-01-8 73 Surrogates ND ug/kg 377 1 05/13/19 05/14/19 00:03 316-60-0 2-1 2-Fluorobiphenyl (S) 65 %. 11-166 1 05/13/19 05/14/19 00:03 1718-51-0 2-Fluorobiphenyl (S) 62 %. 11-156 1 05/07/19 18:40 05/08/19 01:45 1718-51-0 2-Edo MSV 5035 Analytical Method: EPA 8260B Preparation Method: EPA 8260B 51.3 1 05/07/19 18:40 05/08/19 01:45 17-1-1 Acrolein ND ug/kg 51.3 1 05/07/19 18:40 05/08/19 14.5 17-43-1 Berzene ND ug/kg 51.1 1 05/07/19 18:40 05/08/19 11.45 10.8	Naphthalene	ND	ug/kg	377	1	05/13/19 19:00	05/14/19 00:36	91-20-3	
Pyrene ND ug/kg 377 1 05/13/19 19:00 05/14/19 00:00 129-00-0 v3 Surrogates ND ug/kg 377 1 05/13/19 19:00 05/14/19 00:00 4165-60-0 2-Fluorobiphenyl (S) 65 %. 15-126 1 05/13/19 19:00 05/14/19 00:00 21-60-8 2-Fluorobiphenyl (S) 62 %. 11-156 1 05/13/19 19:00 05/14/19 00:00 1718-51-0 8260 MSV 5035 Analytical Method: EPA 8260B Preparation ND 05/07/19 18:40 05/08/19 01:45 107-02-8 Accrolen ND ug/kg 51.3 1 05/07/19 18:40 05/08/19 01:45 107-13-1 Benzene ND ug/kg 51.3 1 05/07/19 18:40 05/08/19 01:45 108-86-1 Bromochioromethane ND ug/kg 51.1 1 05/07/19 18:40 05/08/19 0	Phenanthrene	ND	ug/kg	377	1	05/13/19 19:00	05/14/19 00:36	85-01-8	
Surrogates Number 2000 Strand 2000 <trand 2000<="" th=""> Strand 2000 <t< td=""><td>Pyrene</td><td>ND</td><td>ug/kg</td><td>377</td><td>1</td><td>05/13/19 19:00</td><td>05/14/19 00:36</td><td>129-00-0</td><td>v3</td></t<></trand>	Pyrene	ND	ug/kg	377	1	05/13/19 19:00	05/14/19 00:36	129-00-0	v3
Nitrobenzene-d5 (S) 48 %. 11-106 1 05/13/19 19:00 05/14/19 00:36 14:56-00 2-Fluorobiphenyl (S) 65 %. 15:126 1 05/13/19 19:00 05/14/19 00:36 321-60-8 p-Terphenyl-d14 (S) 62 %. 11-156 1 05/13/19 19:00 05/14/19 00:36 718-51-0 8260 MSV 5035 Analytical Method: EPA 8260B Preparation Method: EPA 5035 Acctolein ND ug/kg 51.3 1 05/07/19 18:40 05/08/19 01:45 67-64-1 Acrolein ND ug/kg 51.3 1 05/07/19 18:40 05/08/19 01:45 107-13-1 Benzene ND ug/kg 51.3 1 05/07/19 18:40 05/08/19 01:45 74-43-2 Bromochloromethane ND ug/kg 51.1 1 05/07/19 18:40 05/08/19 01:45 74-97-5 Bromochloromethane ND ug/kg 51.1 1 05/07/19 18:40 05/08/19 01:45 75-27-4 Bromochloromethane ND	Surrogates		0 0						
2-Fluorobiphenyl (S) 65 %. 15-126 1 05/13/19 19:00 05/14/19 00:36 321-60-8 p-Terphenyl-d14 (S) 62 %. 11-156 1 05/13/19 19:00 05/14/19 00:36 321-60-8 8260 MSV 5035 Analytical Method: EPA 8260B Preparation EPA 5035 Acctone ND ug/kg 103 1 05/07/19 18:40 05/08/19 01:45 67-64-1 Acrolein ND ug/kg 51.3 1 05/07/19 18:40 05/08/19 01:45 70-70-78 Benzene ND ug/kg 51.3 1 05/07/19 18:40 05/08/19 01:45 71-43-2 Bromobenzene ND ug/kg 51.1 1 05/07/19 18:40 05/08/19 01:45 75-27-4 Bromodichioromethane ND ug/kg 51.1 1 05/07/19 18:40 05/08/19 01:45 75-27-3 Bromodichioromethane ND ug/kg 51.1 1 05/07/19 18:40 05/08/19 01:45 75-27-3 Bromodichioromethane ND ug/k	Nitrobenzene-d5 (S)	48	%.	11-106	1	05/13/19 19:00	05/14/19 00:36	4165-60-0	
p-Terphenyl-d14 (S) 62 %. 11-156 1 05/13/19 19:00 05/14/19 00:36 718-51-0 8260 MSV 5035 Analytical Method: EPA 8260B Preparation Method: EPA 5035 Acetone ND ug/kg 10.3 1 05/07/19 18:40 05/08/19 01:45 67-64-1 Acrolein ND ug/kg 51.3 1 05/07/19 18:40 05/08/19 01:45 71-43-2 Benzene ND ug/kg 51.3 1 05/07/19 18:40 05/08/19 01:45 74-97-5 Bromochloromethane ND ug/kg 51.1 1 05/07/19 18:40 05/08/19 01:45 74-97-5 Bromochloromethane ND ug/kg 51.1 1 05/07/19 18:40 05/08/19 01:45 75-27-4 Bromochoromethane ND ug/kg 10.3 1 05/07/19 18:40 05/08/19 01:45 75-27-4 Bromochoromethane ND ug/kg 10.3 1 05/07/19 18:40 05/08/19 01:45 75-27-4 Bromochorom ND ug/kg 10.3	2-Fluorobiphenyl (S)	65	%.	15-126	1	05/13/19 19:00	05/14/19 00:36	321-60-8	
Baco MSV 5035 Analytical Method: EPA 82608 Preparation Method: EPA 5035 Accoleon ND ug/kg 103 1 05/07/19 18:40 05/08/19 01:45 107-02-8 Acrolein ND ug/kg 51.3 1 05/07/19 18:40 05/08/19 01:45 107-02-8 Acrylonitrile ND ug/kg 51.3 1 05/07/19 18:40 05/08/19 01:45 71-43-2 Bromochoromethane ND ug/kg 51.1 1 05/07/19 18:40 05/08/19<01:45	p-Terphenyl-d14 (S)	62	%.	11-156	1	05/13/19 19:00	05/14/19 00:36	1718-51-0	
Acetone ND ug/kg 103 1 05/07/19 18:40 05/08/19 01:45 07-02-8 Acrolein ND ug/kg 51.3 1 05/07/19 18:40 05/08/19 01:45 107-02-8 Acrylonitrile ND ug/kg 51.3 1 05/07/19 18:40 05/08/19 01:45 17-13-1 Benzene ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 71-43-2 Bromochloromethane ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 74-97-5 Bromochloromethane ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 75-27-4 Bromochromethane ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 76-93-3 -Butylbenzene ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 164-51-8 </td <td>8260 MSV 5035</td> <td>Analytical Met</td> <td>hod: EPA 826</td> <td>0B Preparation Me</td> <td>ethod: E</td> <td>EPA 5035</td> <td></td> <td></td> <td></td>	8260 MSV 5035	Analytical Met	hod: EPA 826	0B Preparation Me	ethod: E	EPA 5035			
Acrolein ND ug/kg 51.3 1 05/07/19 18:40 05/08/19 01:45 107-02-8 Acrylonitrile ND ug/kg 51.3 1 05/07/19 18:40 05/08/19 01:45 71-43-2 Benzene ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 71-43-2 Bromochloromethane ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 74-97-5 Bromochloromethane ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 74-97-5 Bromochloromethane ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 74-83-9 2-Butanone (MEK) ND ug/kg 1.0 05/07/19 18:40 05/08/19 01:45 13-98-8 sec-Butylbenzene ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 13-98-8	Acetone	ND	ug/kg	103	1	05/07/19 18:40	05/08/19 01:45	67-64-1	
AcrylonitrileNDug/kg51.3105/07/1918:4005/08/19017-13-1BenzeneNDug/kg5.1105/07/1918:4005/08/190114571-43-2BromobenzeneNDug/kg5.1105/07/1918:4005/08/190114574-97-5BromochloromethaneNDug/kg5.1105/07/1918:4005/08/190114575-27-4BromochloromethaneNDug/kg5.1105/07/1918:4005/08/190114575-27-4BromoformNDug/kg5.1105/07/1918:4005/08/190114575-27-4BromoformNDug/kg10.3105/07/1918:4005/08/190114575-27-4BromoformNDug/kg10.3105/07/1918:4005/08/190114575-27-4BromoformNDug/kg10.3105/07/1918:4005/08/190114575-27-4BromoformNDug/kg5.1105/07/1918:4005/08/190114575-27-4BromoformNDug/kg5.1105/07/1918:4005/08/190114575-37-4Sec-ButylbenzeneNDug/kg5.1105/07/1918:4005/08/1901145135-98-8Carbon disulfideNDug/kg5.1105/07/1918:4005/08/190114556-23-5ChlorobenzeneND<	Acrolein	ND	ug/kg	51.3	1	05/07/19 18:40	05/08/19 01:45	107-02-8	
Benzene ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 71-43-2 Bromobenzene ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 74-97-5 Bromodichloromethane ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 74-97-5 Bromodichloromethane ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 75-27-4 Bromodichloromethane ND ug/kg 1.1 05/07/19 18:40 05/08/19 01:45 75-25-2 Bromomethane ND ug/kg 10.3 1 05/07/19 18:40 05/08/19 01:45 78-93-3 2-Butanone (MEK) ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 78-93-3 n-Butylbenzene ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 78-93-3 carbon disulfide ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 78-93-3 Carbon disulfide	Acrylonitrile	ND	ua/ka	51.3	1	05/07/19 18:40	05/08/19 01:45	107-13-1	
Bromobenzene ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 14-97-5 Bromochloromethane ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 74-97-5 Bromodichloromethane ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 75-27-4 Bromomethane ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 75-25-2 Bromomethane ND ug/kg 10.3 1 05/07/19 18:40 05/08/19 01:45 74-93-3 2-Butanone (MEK) ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 78-93-3 n-Butylbenzene ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 135-98-8 tert-Butylbenzene ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45	Benzene	ND	ug/kg	5.1	1	05/07/19 18:40	05/08/19 01:45	71-43-2	
Bromochloromethane ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 74-97-5 Bromodichloromethane ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 75-27-4 Bromodichloromethane ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 75-25-2 Bromomethane ND ug/kg 10.3 1 05/07/19 18:40 05/08/19 01:45 74-83-9 2-Butanone (MEK) ND ug/kg 103 1 05/07/19 18:40 05/08/19 01:45 74-83-9 2-Butanone (MEK) ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 74-97-5 sec-Butylbenzene ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 75-15-8 carbon disulfide ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 75-15-0 Carbon tetrachloride ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 75-07-3	Bromobenzene	ND	ug/kg	5.1	1	05/07/19 18:40	05/08/19 01:45	108-86-1	
Bromodichloromethane ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 75-27-4 Bromoform ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 75-25-2 Bromomethane ND ug/kg 10.3 1 05/07/19 18:40 05/08/19 01:45 74-83-9 2-Butanone (MEK) ND ug/kg 10.3 1 05/07/19 18:40 05/08/19 01:45 74-83-9 2-Butanone (MEK) ND ug/kg 10.3 1 05/07/19 18:40 05/08/19 01:45 14-51-8 sec-Butylbenzene ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 75-16-0 Carbon disulfide ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 56-23-5 Chlorobenzene ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 75	Bromochloromethane	ND	ug/kg	5.1	1	05/07/19 18:40	05/08/19 01:45	74-97-5	
Bromoform ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 75-25-2 Bromomethane ND ug/kg 10.3 1 05/07/19 18:40 05/08/19 01:45 74-83-9 2-Butanone (MEK) ND ug/kg 103 1 05/07/19 18:40 05/08/19 01:45 78-93-3 n-Butylbenzene ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 135-98-8 sec-Butylbenzene ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 98-06-6 Carbon disulfide ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 75-15-0 Carbon disulfide ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 75-15-0 Carbon tetrachloride ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 75-00-3 Chlorobenzene ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 74-87-3 v2	Bromodichloromethane	ND	ug/kg	5.1	1	05/07/19 18:40	05/08/19 01:45	75-27-4	
Bromomethane ND ug/kg 10.3 1 05/07/19 18:40 05/08/19 01:45 74-83-9 2-Butanone (MEK) ND ug/kg 103 1 05/07/19 18:40 05/08/19 01:45 78-93-3 n-Butylbenzene ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 104-51-8 sec-Butylbenzene ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 135-98-8 tert-Butylbenzene ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 98-06-6 Carbon disulfide ND ug/kg 10.3 1 05/07/19 18:40 05/08/19 01:45 75-15-0 Carbon tetrachloride ND ug/kg 10.3 1 05/07/19 18:40 05/08/19 01:45 75-03-3 Chlorobenzene ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 74-83-3 V2 Chloroform ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 74-87-3 V2	Bromoform	ND	ug/kg	5.1	1	05/07/19 18:40	05/08/19 01:45	75-25-2	
2-Butanone (MEK)NDug/kg103105/07/1918:4005/08/1901:4578-93-3n-ButylbenzeneNDug/kg5.1105/07/1918:4005/08/1901:45104-51-8sec-ButylbenzeneNDug/kg5.1105/07/1918:4005/08/1901:45135-98-8tert-ButylbenzeneNDug/kg5.1105/07/1918:4005/08/1901:4598-06-6Carbon disulfideNDug/kg10.3105/07/1918:4005/08/1901:4575-15-0Carbon tetrachlorideNDug/kg5.1105/07/1918:4005/08/1901:4556-23-5ChlorobenzeneNDug/kg5.1105/07/1918:4005/08/1901:4575-00-3ChloroformNDug/kg5.1105/07/1918:4005/08/1901:4575-00-3ChloroformNDug/kg5.1105/07/1918:4005/08/1901:4575-00-3ChloroformNDug/kg5.1105/07/1918:4005/08/1901:4574-87-3v22-ChlorotolueneNDug/kg5.1105/07/1918:4005/08/1901:4574-87-3v22-ChlorotolueneNDug/kg5.1105/07/1918:4005/08/1901:4595-49-84-ChlorotolueneNDug/kg5.1105/07/1918:4005/08/19 <t< td=""><td>Bromomethane</td><td>ND</td><td>ug/kg</td><td>10.3</td><td>1</td><td>05/07/19 18:40</td><td>05/08/19 01:45</td><td>74-83-9</td><td></td></t<>	Bromomethane	ND	ug/kg	10.3	1	05/07/19 18:40	05/08/19 01:45	74-83-9	
n-ButylbenzeneNDug/kg5.1105/07/1918:4005/08/1901:45104-51-8sec-ButylbenzeneNDug/kg5.1105/07/1918:4005/08/1901:45135-98-8tert-ButylbenzeneNDug/kg5.1105/07/1918:4005/08/1901:4598-06-6Carbon disulfideNDug/kg10.3105/07/1918:4005/08/1901:4575-15-0Carbon tetrachlorideNDug/kg5.1105/07/1918:4005/08/1901:4556-23-5ChlorobenzeneNDug/kg5.1105/07/1918:4005/08/1901:45108-90-7ChlorotehaneNDug/kg5.1105/07/1918:4005/08/1901:4575-00-3ChloroformNDug/kg5.1105/07/1918:4005/08/1901:4576-66-3ChlorotolueneNDug/kg5.1105/07/1918:4005/08/1901:4574-87-3v22-ChlorotolueneNDug/kg5.1105/07/1918:4005/08/1901:4574-87-3v22-ChlorotolueneNDug/kg5.1105/07/1918:4005/08/1901:4595-49-84-ChlorotolueneNDug/kg5.1105/07/1918:4005/08/1901:4596-43-41,2-Dibromo-3-chloropropaneNDug/kg5.1105/07/1918:40 <t< td=""><td>2-Butanone (MEK)</td><td>ND</td><td>ug/kg</td><td>103</td><td>1</td><td>05/07/19 18:40</td><td>05/08/19 01:45</td><td>78-93-3</td><td></td></t<>	2-Butanone (MEK)	ND	ug/kg	103	1	05/07/19 18:40	05/08/19 01:45	78-93-3	
sec-Butylbenzene ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 135-98-8 tert-Butylbenzene ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 98-06-6 Carbon disulfide ND ug/kg 10.3 1 05/07/19 18:40 05/08/19 01:45 75-15-0 Carbon tetrachloride ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 56-23-5 Chlorobenzene ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 56-23-5 Chlorobenzene ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 75-00-3 Chloroform ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 76-66-3 Chloroform ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 74-87-	n-Butylbenzene	ND	ug/kg	5.1	1	05/07/19 18:40	05/08/19 01:45	104-51-8	
tert-BurylbenzeneNDug/kg5.1105/07/1918:4005/08/1901:4598-06-6Carbon disulfideNDug/kg10.3105/07/1918:4005/08/1901:4575-15-0Carbon tetrachlorideNDug/kg5.1105/07/1918:4005/08/1901:4556-23-5ChlorobenzeneNDug/kg10.3105/07/1918:4005/08/1901:45108-90-7ChlorobethaneNDug/kg5.1105/07/1918:4005/08/1901:4575-00-3ChloroformNDug/kg5.1105/07/1918:4005/08/1901:4567-66-3ChlorobethaneNDug/kg5.1105/07/1918:4005/08/1901:4574-87-3v22-ChlorotolueneNDug/kg5.1105/07/1918:4005/08/1901:4574-87-3v22-ChlorotolueneNDug/kg5.1105/07/1918:4005/08/1901:4595-49-84-ChlorotolueneNDug/kg5.1105/07/1918:4005/08/1901:45106-43-41,2-Dibromo-3-chloropropaneNDug/kg5.1105/07/1918:4005/08/1901:4596-12-8	sec-Butylbenzene	ND	ug/kg	5.1	1	05/07/19 18:40	05/08/19 01:45	135-98-8	
Carbon disulfide ND ug/kg 10.3 1 05/07/19 18:40 05/08/19 01:45 75-15-0 Carbon tetrachloride ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 56-23-5 Chlorobenzene ND ug/kg 10.3 1 05/07/19 18:40 05/08/19 01:45 75-10-0 Chlorobenzene ND ug/kg 10.3 1 05/07/19 18:40 05/08/19 01:45 75-00-3 Chlorobenzene ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 75-00-3 Chloroform ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 74-87-3 v2 2-Chlorotoluene ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 74-87-3 v2 2-Chlorotoluene ND ug/kg 5.1 1 05/07/19 18:40 05/08/19	tert-Butylbenzene	ND	ug/kg	5.1	1	05/07/19 18:40	05/08/19 01:45	98-06-6	
Carbon tetrachloride ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 56-23-5 Chlorobenzene ND ug/kg 10.3 1 05/07/19 18:40 05/08/19 01:45 108-90-7 Chlorobenzene ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 75-00-3 Chloroform ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 75-00-3 Chloroform ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 67-66-3 Chloromethane ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 74-87-3 v2 2-Chlorotoluene ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 95-49-8 4-Chlorotoluene ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45	Carbon disulfide	ND	ug/kg	10.3	1	05/07/19 18:40	05/08/19 01:45	75-15-0	
Chlorobenzene ND ug/kg 10.3 1 05/07/19 18:40 05/08/19 01:45 108-90-7 Chloroethane ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 75-00-3 Chloroform ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 75-00-3 Chloroform ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 67-66-3 Chloromethane ND ug/kg 10.3 1 05/07/19 18:40 05/08/19 01:45 74-87-3 v2 2-Chlorotoluene ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 95-49-8 4-Chlorotoluene ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 106-43-4 1,2-Dibromo-3-chloropropane ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 </td <td>Carbon tetrachloride</td> <td>ND</td> <td>ug/kg</td> <td>5.1</td> <td>1</td> <td>05/07/19 18:40</td> <td>05/08/19 01:45</td> <td>56-23-5</td> <td></td>	Carbon tetrachloride	ND	ug/kg	5.1	1	05/07/19 18:40	05/08/19 01:45	56-23-5	
Chloroethane ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 75-00-3 Chloroform ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 67-66-3 Chloromethane ND ug/kg 10.3 1 05/07/19 18:40 05/08/19 01:45 74-87-3 v2 2-Chlorotoluene ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 74-87-3 v2 2-Chlorotoluene ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 95-49-8 4-Chlorotoluene ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 106-43-4 1,2-Dibromo-3-chloropropane ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 96-12-8	Chlorobenzene	ND	ug/kg	10.3	1	05/07/19 18:40	05/08/19 01:45	108-90-7	
Chloroform ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 67-66-3 Chloromethane ND ug/kg 10.3 1 05/07/19 18:40 05/08/19 01:45 74-87-3 v2 2-Chlorotoluene ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 95-49-8 4-Chlorotoluene ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 106-43-4 1,2-Dibromo-3-chloropropane ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 96-12-8	Chloroethane	ND	ug/ka	5.1	1	05/07/19 18:40	05/08/19 01:45	75-00-3	
Chloromethane ND ug/kg 10.3 1 05/07/19 18:40 05/08/19 01:45 74-87-3 v2 2-Chlorotoluene ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 95-49-8 4-Chlorotoluene ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 95-49-8 1,2-Dibromo-3-chloropropane ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 96-12-8	Chloroform	ND	ug/ka	5.1	1	05/07/19 18:40	05/08/19 01:45	67-66-3	
2-Chlorotoluene ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 95-49-8 4-Chlorotoluene ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 106-43-4 1,2-Dibromo-3-chloropropane ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 96-12-8	Chloromethane	ND	ug/ka	10.3	1	05/07/19 18:40	05/08/19 01:45	74-87-3	v2
4-Chlorotoluene ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 106-43-4 1,2-Dibromo-3-chloropropane ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 96-12-8	2-Chlorotoluene	ND	ug/kg	5.1	1	05/07/19 18:40	05/08/19 01:45	95-49-8	
1,2-Dibromo-3-chloropropane ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 96-12-8	4-Chlorotoluene	ND	ug/kg	5.1	1	05/07/19 18:40	05/08/19 01:45	106-43-4	
	1,2-Dibromo-3-chloropropane	ND	ug/kg	5.1	1	05/07/19 18:40	05/08/19 01:45	96-12-8	

Project: 825 Warner Street 19-064

Pace Project No.: 2618256

Sample: B1-5-10'	Lab ID: 261	8256001	Collected: 05/07/1	9 08:2	7 Received: 05	eceived: 05/07/19 13:46 Matrix: Solid			
Results reported on a "dry weigh	t" basis and are adj	iusted for pe	rcent moisture, sa	mple s	size and any dilu	tions.			
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual	
8260 MSV 5035	Analytical Mether	nod: EPA 826	0B Preparation Me	thod: E	EPA 5035				
Dibromochloromethane	ND	ug/kg	5.1	1	05/07/19 18:40	05/08/19 01:45	124-48-1		
1,2-Dibromoethane (EDB)	ND	ug/kg	5.1	1	05/07/19 18:40	05/08/19 01:45	106-93-4		
Dibromomethane	ND	ug/kg	5.1	1	05/07/19 18:40	05/08/19 01:45	74-95-3		
1,2-Dichlorobenzene	ND	ug/kg	5.1	1	05/07/19 18:40	05/08/19 01:45	95-50-1		
1,3-Dichlorobenzene	ND	ug/kg	5.1	1	05/07/19 18:40	05/08/19 01:45	541-73-1		
1,4-Dichlorobenzene	ND	ug/kg	5.1	1	05/07/19 18:40	05/08/19 01:45	106-46-7		
Dichlorodifluoromethane	ND	ug/kg	10.3	1	05/07/19 18:40	05/08/19 01:45	75-71-8		
1,1-Dichloroethane	ND	ug/kg	5.1	1	05/07/19 18:40	05/08/19 01:45	75-34-3		
1,2-Dichloroethane	ND	ug/kg	5.1	1	05/07/19 18:40	05/08/19 01:45	107-06-2		
1,1-Dichloroethene	ND	ug/kg	5.1	1	05/07/19 18:40	05/08/19 01:45	75-35-4		
cis-1,2-Dichloroethene	ND	ug/kg	5.1	1	05/07/19 18:40	05/08/19 01:45	156-59-2		
trans-1,2-Dichloroethene	ND	ug/kg	5.1	1	05/07/19 18:40	05/08/19 01:45	156-60-5		
1,2-Dichloropropane	ND	ug/kg	5.1	1	05/07/19 18:40	05/08/19 01:45	78-87-5		
1.3-Dichloropropane	ND	ua/ka	5.1	1	05/07/19 18:40	05/08/19 01:45	142-28-9		
2,2-Dichloropropane	ND	ug/kg	5.1	1	05/07/19 18:40	05/08/19 01:45	594-20-7		
1,1-Dichloropropene	ND	ug/kg	5.1	1	05/07/19 18:40	05/08/19 01:45	563-58-6		
cis-1.3-Dichloropropene	ND	ua/ka	5.1	1	05/07/19 18:40	05/08/19 01:45	10061-01-5		
trans-1.3-Dichloropropene	ND	ua/ka	5.1	1	05/07/19 18:40	05/08/19 01:45	10061-02-6		
Diisopropyl ether	ND	ua/ka	5.1	1	05/07/19 18:40	05/08/19 01:45	108-20-3		
Ethylbenzene	ND	ua/ka	5.1	1	05/07/19 18:40	05/08/19 01:45	100-41-4		
2-Hexanone	ND	ua/ka	51.3	1	05/07/19 18:40	05/08/19 01:45	591-78-6		
Isopropylbenzene (Cumene)	ND	ua/ka	5.1	1	05/07/19 18:40	05/08/19 01:45	98-82-8		
p-Isopropyltoluene	ND	ua/ka	5.1	1	05/07/19 18:40	05/08/19 01:45	99-87-6		
Methylene Chloride	ND	ua/ka	10.3	1	05/07/19 18:40	05/08/19 01:45	75-09-2		
4-Methyl-2-pentanone (MIBK)	ND	ua/ka	51.3	1	05/07/19 18:40	05/08/19 01:45	108-10-1		
Methyl-tert-butyl ether	ND	ua/ka	5.1	1	05/07/19 18:40	05/08/19 01:45	1634-04-4		
Naphthalene	ND	ua/ka	5.1	1	05/07/19 18:40	05/08/19 01:45	91-20-3		
n-Propylbenzene	ND	ua/ka	5.1	1	05/07/19 18:40	05/08/19 01:45	103-65-1		
Styrene	ND	ua/ka	5.1	1	05/07/19 18:40	05/08/19 01:45	100-42-5		
1.1.1.2-Tetrachloroethane	ND	ua/ka	5.1	1	05/07/19 18:40	05/08/19 01:45	630-20-6	M1	
1.1.2.2-Tetrachloroethane	ND	ua/ka	5.1	1	05/07/19 18:40	05/08/19 01:45	79-34-5		
Tetrachloroethene	ND	ua/ka	5.1	1	05/07/19 18:40	05/08/19 01:45	127-18-4		
Toluene	ND	ua/ka	5.1	1	05/07/19 18:40	05/08/19 01:45	108-88-3		
1.2.3-Trichlorobenzene	ND	ua/ka	5.1	1	05/07/19 18:40	05/08/19 01:45	87-61-6		
1.2.4-Trichlorobenzene	ND	ua/ka	5.1	1	05/07/19 18:40	05/08/19 01:45	120-82-1		
1.1.1-Trichloroethane	ND	ua/ka	5.1	1	05/07/19 18:40	05/08/19 01:45	71-55-6		
1.1.2-Trichloroethane	ND	ua/ka	5.1	1	05/07/19 18:40	05/08/19 01:45	79-00-5		
Trichloroethene	ND	ua/ka	5.1	1	05/07/19 18:40	05/08/19 01.45	79-01-6		
Trichlorofluoromethane	ND	ug/kg	5.1	1	05/07/19 18:40	05/08/19 01:45	75-69-4		
1 2 3-Trichloropropane	ND	ug/kg	5.1	1	05/07/19 18:40	05/08/19 01:45	96-18-4		
1 2 4-Trimethylbenzene	ND	ug/kg	5.1	1	05/07/19 18:40	05/08/19 01:45	95-63-6		
1.3.5-Trimethylbenzene	ND	ug/ka	5.1	1	05/07/19 18:40	05/08/19 01.45	108-67-8		
Vinvl acetate	ND	ua/ka	10.3	1	05/07/19 18:40	05/08/19 01:45	108-05-4		
Vinvl chloride	ND	ua/ka	10.3	1	05/07/19 18:40	05/08/19 01:45	75-01-4		
Xvlene (Total)	ND	ug/ka	10.3	1	05/07/19 18:40	05/08/19 01:45	1330-20-7	MS	
m&p-Xvlene	ND	ug/ka	5 1	1	05/07/19 18:40	05/08/19 01.45	179601-23-1	M1	
			0.1	•					

Project: 825 Warner Street 19-064

Pace Project No.: 2618256

Sample: B1-5-10'	Lab ID: 261	B256001 Co	llected: 05/07/1	9 08:2	7 Received: 05	/07/19 13:46 N	latrix: Solid	
Results reported on a "dry weight	t" basis and are adj	usted for perce	ent moisture, sa	mple s	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV 5035	Analytical Meth	nod: EPA 8260B	Preparation Me	thod: E	EPA 5035			
o-Xylene	ND	ug/kg	5.1	1	05/07/19 18:40	05/08/19 01:45	95-47-6	
Surrogates								
Dibromofluoromethane (S)	106	%.	73-114	1	05/07/19 18:40	05/08/19 01:45	1868-53-7	
Toluene-d8 (S)	104	%.	85-109	1	05/07/19 18:40	05/08/19 01:45	2037-26-5	
4-Bromofluorobenzene (S)	114	%.	77-124	1	05/07/19 18:40	05/08/19 01:45	460-00-4	
1,2-Dichloroethane-d4 (S)	110	%.	69-133	1	05/07/19 18:40	05/08/19 01:45	17060-07-0	
Percent Moisture	Analytical Meth	nod: Pace SOP a	¥204					
Percent Moisture	12.5	%	0.10	1		05/13/19 10:03		

Project: 825 Warner Street 19-064

Pace Project No.: 2618256

Sample: B2-7-10'	Lab ID: 261	8256002	Collected: 05/07/1	9 09:3	0 Received: 05	5/07/19 13:46 N	latrix: Solid	
Results reported on a "dry we	ight" basis and are adj	iusted for pe	rcent moisture, sa	mple s	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010D MET ICP	Analytical Met	hod: EPA 601	0D Preparation Me	ethod: E	EPA 3050B			
Arsenic	27.9	mg/kg	3.6	1	05/08/19 12:00	05/09/19 08:05	7440-38-2	
Barium	276	mg/kg	1.2	1	05/08/19 12:00	05/09/19 08:05	7440-39-3	M1,R1
Cadmium	28.9	mg/kg	1.2	1	05/08/19 12:00	05/09/19 08:05	7440-43-9	
Chromium	31.9	mg/kg	1.2	1	05/08/19 12:00	05/09/19 08:05	7440-47-3	M1,R1
Lead	5880	mg/kg	3.0	1	05/08/19 12:00	05/09/19 08:05	7439-92-1	M1,R1
Selenium	ND	mg/kg	4.8	1	05/08/19 12:00	05/09/19 08:05	7782-49-2	
Silver	ND	mg/kg	1.2	1	05/08/19 12:00	05/09/19 08:05	7440-22-4	
7471 Mercury	Analytical Mether	hod: EPA 747	1B Preparation Me	ethod: E	EPA 7471B			
Mercury	ND	mg/kg	0.28	1	05/08/19 16:01	05/08/19 22:19	7439-97-6	
8270D MSSV PAH	Analytical Met	hod: EPA 827	0D Preparation Me	ethod: E	EPA 3546			
Acenaphthene	ND	ug/kg	4050	10	05/08/19 12:15	05/08/19 23:14	83-32-9	M6
Acenaphthylene	ND	ug/kg	4050	10	05/08/19 12:15	05/08/19 23:14	208-96-8	M6
Anthracene	ND	ug/kg	4050	10	05/08/19 12:15	05/08/19 23:14	120-12-7	M6
Benzo(a)anthracene	ND	ug/kg	4050	10	05/08/19 12:15	05/08/19 23:14	56-55-3	M6
Benzo(a)pyrene	ND	ug/kg	4050	10	05/08/19 12:15	05/08/19 23:14	50-32-8	IU,M6
Benzo(b)fluoranthene	ND	ug/kg	4050	10	05/08/19 12:15	05/08/19 23:14	205-99-2	IU,M6
Benzo(g,h,i)perylene	ND	ug/kg	4050	10	05/08/19 12:15	05/08/19 23:14	191-24-2	IU,M6
Benzo(k)fluoranthene	ND	ug/kg	4050	10	05/08/19 12:15	05/08/19 23:14	207-08-9	IU,M6
Chrysene	ND	ug/kg	4050	10	05/08/19 12:15	05/08/19 23:14	218-01-9	M6
Dibenz(a,h)anthracene	ND	ug/kg	4050	10	05/08/19 12:15	05/08/19 23:14	53-70-3	IU,M6
Fluoranthene	6570	ug/kg	4050	10	05/08/19 12:15	05/08/19 23:14	206-44-0	M6
Fluorene	ND	ug/kg	4050	10	05/08/19 12:15	05/08/19 23:14	86-73-7	M6
Indeno(1,2,3-cd)pyrene	ND	ug/kg	4050	10	05/08/19 12:15	05/08/19 23:14	193-39-5	IU,M6
1-Methylnaphthalene	ND	ug/kg	4050	10	05/08/19 12:15	05/08/19 23:14	90-12-0	M6
2-Methylnaphthalene	ND	ug/kg	4050	10	05/08/19 12:15	05/08/19 23:14	91-57-6	M6
Naphthalene	ND	ug/kg	4050	10	05/08/19 12:15	05/08/19 23:14	91-20-3	M6
Phenanthrene	6050	ug/kg	4050	10	05/08/19 12:15	05/08/19 23:14	85-01-8	M6
Pyrene Surrogates	5580	ug/kg	4050	10	05/08/19 12:15	05/08/19 23:14	129-00-0	M6
Nitrobenzene-d5 (S)	52	%.	11-106	10	05/08/19 12:15	05/08/19 23:14	4165-60-0	
2-Fluorobiphenyl (S)	80	%.	15-126	10	05/08/19 12:15	05/08/19 23:14	321-60-8	
p-Terphenyl-d14 (S)	102	%.	11-156	10	05/08/19 12:15	05/08/19 23:14	1718-51-0	
8260 MSV 5035	Analytical Met	hod: EPA 826	0B Preparation Me	ethod: E	EPA 5035			
Acetone	ND	ug/kg	142	1	05/07/19 18:40	05/08/19 02:09	67-64-1	
Acrolein	ND	ug/kg	70.8	1	05/07/19 18:40	05/08/19 02:09	107-02-8	
Acrylonitrile	ND	ug/kg	70.8	1	05/07/19 18:40	05/08/19 02:09	107-13-1	
Benzene	ND	ug/kg	7.1	1	05/07/19 18:40	05/08/19 02:09	71-43-2	
Bromobenzene	ND	ug/kg	7.1	1	05/07/19 18:40	05/08/19 02:09	108-86-1	
Bromochloromethane	ND	ug/kg	7.1	1	05/07/19 18:40	05/08/19 02:09	74-97-5	
Bromodichloromethane	ND	ug/kg	7.1	1	05/07/19 18:40	05/08/19 02:09	75-27-4	
Bromoform	ND	ug/kg	7.1	1	05/07/19 18:40	05/08/19 02:09	75-25-2	
Bromomethane	ND	ug/kg	14.2	1	05/07/19 18:40	05/08/19 02:09	74-83-9	

REPORT OF LABORATORY ANALYSIS

Project: 825 Warner Street 19-064

Pace Project No.: 2618256

Sample: B2-7-10'	Lab ID: 261	8256002 Co	ollected: 05/07/1	9 09:3	0 Received: 05	07/19 13:46 N	latrix: Solid	
Results reported on a "dry weigh	t" basis and are adj	iusted for perce	ent moisture, sa	mple s	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV 5035	Analytical Met	nod: EPA 8260B	Preparation Me	ethod: E	EPA 5035			
2-Butanone (MEK)	ND	ug/kg	142	1	05/07/19 18:40	05/08/19 02:09	78-93-3	
n-Butylbenzene	ND	ug/kg	7.1	1	05/07/19 18:40	05/08/19 02:09	104-51-8	
sec-Butylbenzene	ND	ug/kg	7.1	1	05/07/19 18:40	05/08/19 02:09	135-98-8	
tert-Butylbenzene	ND	ug/kg	7.1	1	05/07/19 18:40	05/08/19 02:09	98-06-6	
Carbon disulfide	ND	ug/kg	14.2	1	05/07/19 18:40	05/08/19 02:09	75-15-0	
Carbon tetrachloride	ND	ug/kg	7.1	1	05/07/19 18:40	05/08/19 02:09	56-23-5	
Chlorobenzene	ND	ug/kg	14.2	1	05/07/19 18:40	05/08/19 02:09	108-90-7	
Chloroethane	ND	ug/kg	7.1	1	05/07/19 18:40	05/08/19 02:09	75-00-3	
Chloroform	ND	ua/ka	7.1	1	05/07/19 18:40	05/08/19 02:09	67-66-3	
Chloromethane	ND	ug/kg	14.2	1	05/07/19 18:40	05/08/19 02:09	74-87-3	v2
2-Chlorotoluene	ND	ug/kg	7.1	1	05/07/19 18:40	05/08/19 02:09	95-49-8	
4-Chlorotoluene	ND	ua/ka	7.1	1	05/07/19 18:40	05/08/19 02:09	106-43-4	
1.2-Dibromo-3-chloropropane	ND	ua/ka	7.1	1	05/07/19 18:40	05/08/19 02:09	96-12-8	
Dibromochloromethane	ND	ua/ka	7.1	1	05/07/19 18:40	05/08/19 02:09	124-48-1	
1.2-Dibromoethane (EDB)	ND	ua/ka	7.1	1	05/07/19 18:40	05/08/19 02:09	106-93-4	
Dibromomethane	ND	ua/ka	7.1	1	05/07/19 18:40	05/08/19 02:09	74-95-3	
1.2-Dichlorobenzene	ND	ua/ka	7.1	1	05/07/19 18:40	05/08/19 02:09	95-50-1	
1 3-Dichlorobenzene	ND	ua/ka	7 1	1	05/07/19 18:40	05/08/19 02:09	541-73-1	
1 4-Dichlorobenzene	ND	ua/ka	7 1	1	05/07/19 18:40	05/08/19 02:09	106-46-7	
Dichlorodifluoromethane	ND	ua/ka	14.2	1	05/07/19 18:40	05/08/19 02:09	75-71-8	
1 1-Dichloroethane	ND	ua/ka	7 1	1	05/07/19 18:40	05/08/19 02:09	75-34-3	
1 2-Dichloroethane	ND	ug/kg	7.1	1	05/07/19 18:40	05/08/19 02:09	107-06-2	
1 1-Dichloroethene	ND	ua/ka	7 1	1	05/07/19 18:40	05/08/19 02:09	75-35-4	
cis-1 2-Dichloroethene	ND	ug/kg	7.1	1	05/07/19 18:40	05/08/19 02:09	156-59-2	
trans-1 2-Dichloroethene	ND	ug/kg	7.1	1	05/07/19 18:40	05/08/19 02:09	156-60-5	
1 2-Dichloropropane	ND	ug/kg	7.1	1	05/07/19 18:40	05/08/19 02:09	78-87-5	
1 3-Dichloropropane	ND	ug/kg	7.1	1	05/07/19 18:40	05/08/19 02:09	142-28-9	
2 2-Dichloropropane	ND	ug/kg	7.1	1	05/07/19 18:40	05/08/19 02:09	594-20-7	
1 1-Dichloropropene	ND	ug/kg	7.1	1	05/07/19 18:40	05/08/19 02:09	563-58-6	
cis-1 3-Dichloropropene	ND	ug/kg	7.1	1	05/07/19 18:40	05/08/19 02:09	10061-01-5	
trans_1_3_Dichloropropene	ND	ug/kg	7.1	1	05/07/19 18:40	05/08/19 02:09	10061-02-6	
Diisopropyl ether	ND	ug/kg	7.1	1	05/07/19 18:40	05/08/19 02:09	108-20-3	
Ethylbenzene	ND	ug/kg	7.1	1	05/07/19 18:40	05/08/19 02:09	100-41-4	
2-Hevanone	ND	ug/kg	70.8	1	05/07/19 18:40	05/08/19 02:09	591-78-6	
Isopropylbenzene (Cumene)	ND	ug/kg	7 1	1	05/07/19 18:40	05/08/19 02:09	98-82-8	
n-Isopropylbenzene (oumene)	ND	ug/kg	7.1	1	05/07/19 18:40	05/08/19 02:09	99-87-6	
Methylene Chloride		ug/kg	1/1 2	1	05/07/10 18:40	05/08/10 02:00	75-00-2	
4-Methyl-2-pentanone (MIBK)		ug/kg	70.8	1	05/07/19 18:40	05/08/19 02:09	108-10-1	
Mothyl tort butyl other		ug/kg	70.0	1	05/07/10 18:40	05/08/10 02:00	1634 04 4	
Nanhthalene	ND 86	ug/kg	7.1	1	05/07/19 18:40	05/08/19 02:09	01_20_3	
n-Pronvlbenzene		ug/kg	7.1	1	05/07/10 18.40	05/08/10 02:09	103-65-1	
Styrono		ug/kg	7.1	1	05/07/10 19:40	05/08/10 02:09	100-42 5	
1 1 1 2-Tetrachloroothana		ug/kg	7.1	1	05/07/10 19:40	05/08/10 02:09	630-20 6	
		ug/kg	7.1	1	05/07/19 10:40	05/00/19 02.09	70 34 5	
Tetrachloroethene		ug/kg	7.1	1	05/07/10 19:40	05/08/10 02:09	127_19 /	
		ug/kg	1.1 7 4	1	05/07/10 10:40	05/00/19 02.09	100 00 0	
roiuene	ND	ug/kg	7.1	1	05/07/19 18:40	00/08/19 02:09	100-00-3	

Project: 825 Warner Street 19-064

Pace Project No.: 2618256

Sample: B2-7-10'	Lab ID: 261	8256002	Collected: 05/07/1	9 09:3	0 Received: 05	/07/19 13:46 N	latrix: Solid				
Results reported on a "dry weig	Its reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.ParametersResultsUnitsReport LimitDFPreparedAnalyzedCAS No.QualMSV 5035Analytical Method: EPA 8260BPreparation Method: EPA 5035-TrichlorobenzeneNDug/kg7.1105/07/19 18:4005/08/19 02:0987-61-6-TrichlorobenzeneNDug/kg7.1105/07/19 18:4005/08/19 02:09120-82-1-TrichlorobenzeneNDug/kg7.1105/07/19 18:4005/08/19 02:0971-55-6-TrichloroethaneNDug/kg7.1105/07/19 18:4005/08/19 02:0979-00-5oroetheneNDug/kg7.1105/07/19 18:4005/08/19 02:0979-01-6orofluoromethaneNDug/kg7.1105/07/19 18:4005/08/19 02:0979-01-6orofluoromethaneNDug/kg7.1105/07/19 18:4005/08/19 02:0975-69-4-TrichloropropaneNDug/kg7.1105/07/19 18:4005/08/19 02:0996-18-4-TrimethylbenzeneNDug/kg7.1105/07/19 18:4005/08/19 02:0995-63-6-TrimethylbenzeneNDug/kg7.1105/07/19 18:4005/08/19 02:0995-63-6-TrimethylbenzeneNDug/kg7.1105/07/19 18:4005/08/19 02:09108-67-8										
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual			
8260 MSV 5035	Analytical Meth	nod: EPA 82	60B Preparation Me	thod: E	EPA 5035						
1,2,3-Trichlorobenzene	ND	ug/kg	7.1	1	05/07/19 18:40	05/08/19 02:09	87-61-6				
1,2,4-Trichlorobenzene	ND	ug/kg	7.1	1	05/07/19 18:40	05/08/19 02:09	120-82-1				
1,1,1-Trichloroethane	ND	ug/kg	7.1	1	05/07/19 18:40	05/08/19 02:09	71-55-6				
1,1,2-Trichloroethane	ND	ug/kg	7.1	1	05/07/19 18:40	05/08/19 02:09	79-00-5				
Trichloroethene	ND	ug/kg	7.1	1	05/07/19 18:40	05/08/19 02:09	79-01-6				
Trichlorofluoromethane	ND	ug/kg	7.1	1	05/07/19 18:40	05/08/19 02:09	75-69-4				
1,2,3-Trichloropropane	ND	ug/kg	7.1	1	05/07/19 18:40	05/08/19 02:09	96-18-4				
1,2,4-Trimethylbenzene	ND	ug/kg	7.1	1	05/07/19 18:40	05/08/19 02:09	95-63-6				
1,3,5-Trimethylbenzene	ND	ug/kg	7.1	1	05/07/19 18:40	05/08/19 02:09	108-67-8				
Vinyl acetate	ND	ug/kg	14.2	1	05/07/19 18:40	05/08/19 02:09	108-05-4				
Vinyl chloride	ND	ug/kg	14.2	1	05/07/19 18:40	05/08/19 02:09	75-01-4				
Xylene (Total)	ND	ug/kg	14.2	1	05/07/19 18:40	05/08/19 02:09	1330-20-7				
m&p-Xylene	ND	ug/kg	7.1	1	05/07/19 18:40	05/08/19 02:09	179601-23-1				
o-Xylene	ND	ug/kg	7.1	1	05/07/19 18:40	05/08/19 02:09	95-47-6				
Surrogates											
Dibromofluoromethane (S)	107	%.	73-114	1	05/07/19 18:40	05/08/19 02:09	1868-53-7				
Toluene-d8 (S)	104	%.	85-109	1	05/07/19 18:40	05/08/19 02:09	2037-26-5				
4-Bromofluorobenzene (S)	118	%.	77-124	1	05/07/19 18:40	05/08/19 02:09	460-00-4				
1,2-Dichloroethane-d4 (S)	116	%.	69-133	1	05/07/19 18:40	05/08/19 02:09	17060-07-0				
Percent Moisture	Analytical Meth	nod: Pace S	OP #204								
Percent Moisture	18.8	%	0.10	1		05/13/19 10:03					

Project: 825 Warner Street 19-064

Pace Project No.: 2618256

Sample: B3-2-3'	Lab ID: 261	8256003	Collected: 05/07/1	9 10:44	Received: 05	5/07/19 13:46 N	latrix: Solid	
Results reported on a "dry wei	ght" basis and are adj	iusted for pe	ercent moisture, sa	mple s	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010D MET ICP	Analytical Meth	nod: EPA 601	10D Preparation Me	thod: E	PA 3050B			
Arsenic	15.4	mg/kg	3.5	1	05/08/19 12:00	05/09/19 08:26	7440-38-2	
Barium	218	mg/kg	1.2	1	05/08/19 12:00	05/09/19 08:26	7440-39-3	
Cadmium	7.3	mg/kg	1.2	1	05/08/19 12:00	05/09/19 08:26	7440-43-9	
Chromium	42.6	mg/kg	1.2	1	05/08/19 12:00	05/09/19 08:26	7440-47-3	
Lead	109	mg/kg	2.9	1	05/08/19 12:00	05/09/19 08:26	7439-92-1	
Selenium	ND	mg/kg	4.6	1	05/08/19 12:00	05/09/19 08:26	7782-49-2	
Silver	ND	mg/kg	1.2	1	05/08/19 12:00	05/09/19 08:26	7440-22-4	
7471 Mercury	Analytical Meth	nod: EPA 747	71B Preparation Me	thod: E	PA 7471B			
Mercury	ND	mg/kg	0.28	1	05/08/19 16:01	05/08/19 22:22	7439-97-6	
Percent Moisture	Analytical Meth	nod: Pace SC	OP #204					
Percent Moisture	17.1	%	0.10	1		05/13/19 10:04		

Project: 825 Warner Street 19-064

Pace Project No.: 2618256

Sample: B1	Lab ID: 261	8256004	Collected: 05/07/1	9 08:55	Received: 05/0	7/19 13:46 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260B MSV	Analytical Meth	nod: EPA 8	260B					
Acetone	ND	ug/L	25.0	1	C	5/14/19 00:02	67-64-1	M1,R1
Benzene	ND	ug/L	2.0	1	C	5/14/19 00:02	71-43-2	M1,R1
Bromobenzene	ND	ug/L	1.0	1	C	5/14/19 00:02	108-86-1	M1,R1
Bromochloromethane	ND	ug/L	1.0	1	C	5/14/19 00:02	74-97-5	M1,R1
Bromodichloromethane	ND	ug/L	10.0	1	C	5/14/19 00:02	75-27-4	M1,R1
Bromoform	ND	ug/L	10.0	1	C	5/14/19 00:02	75-25-2	M1,R1
Bromomethane	ND	ug/L	10.0	1	C	5/14/19 00:02	74-83-9	R1
2-Butanone (MEK)	ND	ug/L	5.0	1	C	5/14/19 00:02	78-93-3	R1
Carbon tetrachloride	ND	ug/L	2.0	1	C	5/14/19 00:02	56-23-5	M1,R1
Chlorobenzene	ND	ug/L	10.0	1	C	5/14/19 00:02	108-90-7	M1,R1
Chloroethane	ND	ug/L	5.0	1	C	5/14/19 00:02	75-00-3	R1
Chloroform	ND	ug/L	2.0	1	C	5/14/19 00:02	67-66-3	M1,R1
Chloromethane	ND	ua/L	10.0	1	C	5/14/19 00:02	74-87-3	R1
2-Chlorotoluene	ND	ua/L	1.0	1	C	05/14/19 00:02	95-49-8	M1.R1
4-Chlorotoluene	ND	ua/L	1.0	1	C	5/14/19 00:02	106-43-4	M1.R1
1.2-Dibromo-3-chloropropane	ND	ua/L	2.0	1	C	5/14/19 00:02	96-12-8	M1.R1
Dibromochloromethane	ND	ua/L	10.0	1	C	5/14/19 00:02	124-48-1	M1.R1
1.2-Dibromoethane (EDB)	ND	ua/L	2.0	1	C	5/14/19 00:02	106-93-4	M1.R1
Dibromomethane	ND	ua/l	10	1	($\frac{5}{14}$	74-95-3	M1 R1
1 2-Dichlorobenzene	ND	ua/l	10.0	1	($\frac{5}{14}$	95-50-1	M1 R1
1.3-Dichlorobenzene	ND	ug/L	10.0	1	($\frac{5}{14}$	541-73-1	M1 R1
1 4-Dichlorobenzene	ND	ug/L	10.0	1	(5/14/19 00:02	106-46-7	R1
Dichlorodifluoromethane	ND	ug/L	10	1	($\frac{5}{14}$	75-71-8	M1 R1
1 1-Dichloroethane	ND	ug/L	20	1	($\frac{5}{14}$	75-34-3	R1
1 2-Dichloroethane	ND	ug/L	2.0	1	(5/14/19 00:02	107-06-2	R1
1 1-Dichloroethene	ND	ug/L	2.0	1	(5/14/19 00:02	75-35-4	R1
cis-1 2-Dichloroethene	ND	ug/L	1.0	1	(5/14/19 00:02	156-59-2	M1 R1
trans-1 2-Dichloroethene	ND	ug/L	2.0	1	(5/14/19 00:02	156-60-5	M1 R1
1 2-Dichloropropage		ug/L	2.0	1	(5/14/19 00:02	78-87-5	M1 R1
1.3-Dichloropropane		ug/L	1.0	1	(5/14/19 00:02	142-28-9	M1 R1
2 2-Dichloropropane		ug/L	1.0	1	((5/14/19 00:02	594-20-7	R1
1 1-Dichloropropene		ug/L	1.0	1	((5/14/19 00:02	563-58-6	M1 R1
cis-1 3-Dichloropropene		ug/L	2.0	1	(5/14/19 00:02	10061-01-5	R1
trans-1 3-Dichloropropene		ug/L	2.0	1	((5/14/19 00:02	10061-01-5	R1
		ug/L	10.0	1	((5/14/19 00:02	108-20-3	M1 D1
Ethylbonzono		ug/L	2.0	1		5/14/19 00:02	100-20-3	
Hevachloro-1.3-butadiene		ug/L	2.0	1	((5/14/19 00:02	87-68-3	
		ug/L	5.0	1		5/14/19 00:02	501 78 6	
		ug/L	5.0	1		5/14/19 00:02	00 97 6	
P-Isopropylloluene		ug/L	1.0	1		5/14/19 00.02	99-07-0 75 00 0	
Methyl 2 poptopopo (MIDK)		ug/L	5.0	1		5/14/19 00.02	109 10 1	
4-Methyl-2-pentanone (MIBK)		ug/L	5.0 10.0	1		5/14/19 00.02	100-10-1	
Nanhthalana		ug/L	10.0	1		5/14/19 00.02	034-04-4	
Strong		ug/L	1.0	1		5/14/19 00:02	91-20-3	
Jujielle		ug/L	1.0	1		5/14/19/00:02	100-42-5	
	ND	ug/L	1.0	1	(5/14/19 00:02	030-20-0	WIT, KT
1, 1, 2, 2- letrachioroethane	ND	ug/L	2.0	1	(5/14/19 00:02	19-34-5	K1
retrachioroethene	ND	ug/L	2.0	1	C	05/14/19 00:02	127-18-4	K1

Project: 825 Warner Street 19-064

Pace Project No.: 2618256

Sample: B1	Lab ID: 2618	3256004	Collected: 05/07/1	9 08:55	Received: 0	5/07/19 13:46 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260B MSV	Analytical Meth	od: EPA 82	260B					
Toluene	ND	ug/L	2.0	1		05/14/19 00:02	108-88-3	R1
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		05/14/19 00:02	87-61-6	M1,R1
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		05/14/19 00:02	120-82-1	R1
1,1,1-Trichloroethane	ND	ug/L	2.0	1		05/14/19 00:02	71-55-6	M1,R1
1,1,2-Trichloroethane	ND	ug/L	2.0	1		05/14/19 00:02	79-00-5	M1,R1
Trichloroethene	ND	ug/L	2.0	1		05/14/19 00:02	79-01-6	R1
Trichlorofluoromethane	ND	ug/L	1.0	1		05/14/19 00:02	75-69-4	M1,R1
1,2,3-Trichloropropane	ND	ug/L	1.0	1		05/14/19 00:02	96-18-4	M1,R1
Vinyl acetate	ND	ug/L	2.0	1		05/14/19 00:02	108-05-4	R1
Vinyl chloride	ND	ug/L	10.0	1		05/14/19 00:02	75-01-4	R1
Xylene (Total)	ND	ug/L	2.0	1		05/14/19 00:02	1330-20-7	RS
m&p-Xylene	ND	ug/L	1.0	1		05/14/19 00:02	179601-23-1	R1
o-Xylene	ND	ug/L	1.0	1		05/14/19 00:02	95-47-6	R1
Surrogates								
1,2-Dichloroethane-d4 (S)	97	%.	81-119	1		05/14/19 00:02	17060-07-0	
Dibromofluoromethane (S)	103	%.	82-114	1		05/14/19 00:02	1868-53-7	
4-Bromofluorobenzene (S)	88	%.	82-120	1		05/14/19 00:02	460-00-4	
Toluene-d8 (S)	87	%.	82-109	1		05/14/19 00:02	2037-26-5	

Project: 825 Warner Street 19-064

Pace Project No.: 2618256

Sample: B2	Lab ID: 261	Lab ID: 2618256005		Collected: 05/07/19 10:25		5 Received: 05/07/19 13:46 Matrix: Water		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270D MSSV PAH	Analytical Meth	nod: EPA 8	270D Preparation Me	ethod: El	PA 3510C			
Acenaphthene	ND	ug/L	10.0	1	05/08/19 12:15	05/08/19 23:49	83-32-9	
Acenaphthylene	ND	ug/L	10.0	1	05/08/19 12:15	05/08/19 23:49	208-96-8	
Anthracene	ND	ug/L	10.0	1	05/08/19 12:15	05/08/19 23:49	120-12-7	
Benzo(a)anthracene	ND	ug/L	10.0	1	05/08/19 12:15	05/08/19 23:49	56-55-3	
Benzo(a)pyrene	ND	ug/L	10.0	1	05/08/19 12:15	05/08/19 23:49	50-32-8	
Benzo(b)fluoranthene	ND	ug/L	10.0	1	05/08/19 12:15	05/08/19 23:49	205-99-2	
Benzo(g,h,i)perylene	ND	ug/L	10.0	1	05/08/19 12:15	05/08/19 23:49	191-24-2	
Benzo(k)fluoranthene	ND	ug/L	10.0	1	05/08/19 12:15	05/08/19 23:49	207-08-9	
Chrysene	ND	ug/L	10.0	1	05/08/19 12:15	05/08/19 23:49	218-01-9	
Dibenz(a,h)anthracene	ND	ug/L	10.0	1	05/08/19 12:15	05/08/19 23:49	53-70-3	
Fluoranthene	ND	ug/L	10.0	1	05/08/19 12:15	05/08/19 23:49	206-44-0	
Fluorene	ND	ug/L	10.0	1	05/08/19 12:15	05/08/19 23:49	86-73-7	
Indeno(1,2,3-cd)pyrene	ND	ug/L	10.0	1	05/08/19 12:15	05/08/19 23:49	193-39-5	
1-Methylnaphthalene	ND	ug/L	10.0	1	05/08/19 12:15	05/08/19 23:49	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	1	05/08/19 12:15	05/08/19 23:49	91-57-6	
Naphthalene	ND	ug/L	10.0	1	05/08/19 12:15	05/08/19 23:49	91-20-3	
Phenanthrene	ND	ug/L	10.0	1	05/08/19 12:15	05/08/19 23:49	85-01-8	
Pyrene	ND	ug/L	10.0	1	05/08/19 12:15	05/08/19 23:49	129-00-0	
Surrogates		-						
Nitrobenzene-d5 (S)	38	%.	13-107	1	05/08/19 12:15	05/08/19 23:49	4165-60-0	
p-Terphenyl-d14 (S)	54	%.	14-147	1	05/08/19 12:15	05/08/19 23:49	1718-51-0	
2-Fluorobiphenyl (S)	54	%.	12-129	1	05/08/19 12:15	05/08/19 23:49	321-60-8	
8260B MSV	Analytical Meth	nod: EPA 8	260B					
Acetone	ND	ug/L	25.0	1		05/14/19 00:28	67-64-1	
Benzene	ND	ug/L	2.0	1		05/14/19 00:28	71-43-2	
Bromobenzene	ND	ug/L	1.0	1		05/14/19 00:28	108-86-1	
Bromochloromethane	ND	ug/L	1.0	1		05/14/19 00:28	74-97-5	
Bromodichloromethane	ND	ug/L	10.0	1		05/14/19 00:28	75-27-4	
Bromoform	ND	ug/L	10.0	1		05/14/19 00:28	75-25-2	
Bromomethane	ND	ug/L	10.0	1		05/14/19 00:28	74-83-9	
2-Butanone (MEK)	ND	ug/L	5.0	1		05/14/19 00:28	78-93-3	
Carbon tetrachloride	ND	ug/L	2.0	1		05/14/19 00:28	56-23-5	
Chlorobenzene	ND	ug/L	10.0	1		05/14/19 00:28	108-90-7	
Chloroethane	ND	ug/L	5.0	1		05/14/19 00:28	75-00-3	
Chloroform	ND	ug/L	2.0	1		05/14/19 00:28	67-66-3	
Chloromethane	ND	ug/L	10.0	1		05/14/19 00:28	74-87-3	
2-Chlorotoluene	ND	ug/L	1.0	1		05/14/19 00:28	95-49-8	
4-Chlorotoluene	ND	ug/L	1.0	1		05/14/19 00:28	106-43-4	
1,2-Dibromo-3-chloropropane	ND	ug/L	2.0	1		05/14/19 00:28	96-12-8	
Dibromochloromethane	ND	ug/L	10.0	1		05/14/19 00:28	124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/L	2.0	1		05/14/19 00:28	106-93-4	
Dibromomethane	ND	ug/L	1.0	1		05/14/19 00:28	74-95-3	
1,2-Dichlorobenzene	ND	ug/L	10.0	1		05/14/19 00:28	95-50-1	
1,3-Dichlorobenzene	ND	ug/L	10.0	1		05/14/19 00:28	541-73-1	
1,4-Dichlorobenzene	ND	ug/L	10.0	1		05/14/19 00:28	106-46-7	
Dichlorodifluoromethane	ND	ug/L	1.0	1		05/14/19 00:28	75-71-8	

Project: 825 Warner Street 19-064

Pace Project No.: 2618256

Sample: B2	Lab ID: 2618256005		Collected: 05/07/1	9 10:25	Received: 05	latrix: Water		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260B MSV	Analytical Meth	nod: EPA 82	260B					
1,1-Dichloroethane	ND	ug/L	2.0	1		05/14/19 00:28	75-34-3	
1,2-Dichloroethane	ND	ug/L	2.0	1		05/14/19 00:28	107-06-2	
1,1-Dichloroethene	ND	ug/L	2.0	1		05/14/19 00:28	75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		05/14/19 00:28	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	2.0	1		05/14/19 00:28	156-60-5	
1,2-Dichloropropane	ND	ug/L	2.0	1		05/14/19 00:28	78-87-5	
1,3-Dichloropropane	ND	ug/L	1.0	1		05/14/19 00:28	142-28-9	
2,2-Dichloropropane	ND	ug/L	1.0	1		05/14/19 00:28	594-20-7	
1,1-Dichloropropene	ND	ug/L	1.0	1		05/14/19 00:28	563-58-6	
cis-1,3-Dichloropropene	ND	ug/L	2.0	1		05/14/19 00:28	10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	2.0	1		05/14/19 00:28	10061-02-6	
Diisopropyl ether	ND	ug/L	10.0	1		05/14/19 00:28	108-20-3	
Ethylbenzene	ND	ug/L	2.0	1		05/14/19 00:28	100-41-4	
Hexachloro-1,3-butadiene	ND	ug/L	10.0	1		05/14/19 00:28	87-68-3	
2-Hexanone	ND	ug/L	5.0	1		05/14/19 00:28	591-78-6	
p-Isopropyltoluene	ND	ug/L	1.0	1		05/14/19 00:28	99-87-6	
Methylene Chloride	ND	ug/L	5.0	1		05/14/19 00:28	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		05/14/19 00:28	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	10.0	1		05/14/19 00:28	1634-04-4	
Naphthalene	ND	ug/L	1.0	1		05/14/19 00:28	91-20-3	
Styrene	ND	ug/L	1.0	1		05/14/19 00:28	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		05/14/19 00:28	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	2.0	1		05/14/19 00:28	79-34-5	
Tetrachloroethene	ND	ug/L	2.0	1		05/14/19 00:28	127-18-4	
Toluene	ND	ug/L	2.0	1		05/14/19 00:28	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		05/14/19 00:28	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		05/14/19 00:28	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	2.0	1		05/14/19 00:28	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	2.0	1		05/14/19 00:28	79-00-5	
Trichloroethene	ND	ug/L	2.0	1		05/14/19 00:28	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		05/14/19 00:28	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1		05/14/19 00:28	96-18-4	
Vinyl acetate	ND	ug/L	2.0	1		05/14/19 00:28	108-05-4	
Vinyl chloride	ND	ug/L	10.0	1		05/14/19 00:28	75-01-4	
Xylene (Total)	ND	ug/L	2.0	1		05/14/19 00:28	1330-20-7	
m&p-Xylene	ND	ug/L	1.0	1		05/14/19 00:28	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		05/14/19 00:28	95-47-6	
Surrogates		0						
1,2-Dichloroethane-d4 (S)	97	%.	81-119	1		05/14/19 00:28	17060-07-0	
Dibromofluoromethane (S)	104	%.	82-114	1		05/14/19 00:28	1868-53-7	
4-Bromofluorobenzene (S)	88	%.	82-120	1		05/14/19 00:28	460-00-4	
Toluene-d8 (S)	87	%.	82-109	1		05/14/19 00:28	2037-26-5	

REPORT OF LABORATORY ANALYSIS

Project: 825 Warner Street 19-064

Pace Project No.: 2618256

Sample: B3	Lab ID: 261	3256006	Collected: 05/07/1	9 11:24	4 Received: 05/07/19 13:46 Matrix: Water			
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270D MSSV PAH	Analytical Meth	od: EPA 82	270D Preparation Me	thod: E	PA 3510C			
Acenaphthene	ND	ug/L	10.0	1	05/08/19 12:15	05/09/19 00:12	83-32-9	
Acenaphthylene	ND	ug/L	10.0	1	05/08/19 12:15	05/09/19 00:12	208-96-8	
Anthracene	ND	ug/L	10.0	1	05/08/19 12:15	05/09/19 00:12	120-12-7	
Benzo(a)anthracene	ND	ug/L	10.0	1	05/08/19 12:15	05/09/19 00:12	56-55-3	
Benzo(a)pyrene	ND	ug/L	10.0	1	05/08/19 12:15	05/09/19 00:12	50-32-8	
Benzo(b)fluoranthene	ND	ug/L	10.0	1	05/08/19 12:15	05/09/19 00:12	205-99-2	
Benzo(g,h,i)perylene	ND	ug/L	10.0	1	05/08/19 12:15	05/09/19 00:12	191-24-2	
Benzo(k)fluoranthene	ND	ug/L	10.0	1	05/08/19 12:15	05/09/19 00:12	207-08-9	
Chrysene	ND	ug/L	10.0	1	05/08/19 12:15	05/09/19 00:12	218-01-9	
Dibenz(a,h)anthracene	ND	ug/L	10.0	1	05/08/19 12:15	05/09/19 00:12	53-70-3	
Fluoranthene	ND	ug/L	10.0	1	05/08/19 12:15	05/09/19 00:12	206-44-0	
Fluorene	ND	ug/L	10.0	1	05/08/19 12:15	05/09/19 00:12	86-73-7	
Indeno(1,2,3-cd)pyrene	ND	ug/L	10.0	1	05/08/19 12:15	05/09/19 00:12	193-39-5	
1-Methylnaphthalene	ND	ug/L	10.0	1	05/08/19 12:15	05/09/19 00:12	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	1	05/08/19 12:15	05/09/19 00:12	91-57-6	
Naphthalene	ND	ug/L	10.0	1	05/08/19 12:15	05/09/19 00:12	91-20-3	
Phenanthrene	ND	ug/L	10.0	1	05/08/19 12:15	05/09/19 00:12	85-01-8	
Pyrene	ND	ug/L	10.0	1	05/08/19 12:15	05/09/19 00:12	129-00-0	
Surrogates								
Nitrobenzene-d5 (S)	35	%.	13-107	1	05/08/19 12:15	05/09/19 00:12	4165-60-0	
p-Terphenyl-d14 (S)	49	%.	14-147	1	05/08/19 12:15	05/09/19 00:12	1718-51-0	
2-Fluorobiphenyl (S)	57	%.	12-129	1	05/08/19 12:15	05/09/19 00:12	321-60-8	
8260B MSV	Analytical Meth	od: EPA 82	260B					
Acetone	ND	ug/L	25.0	1		05/14/19 00:53	67-64-1	
Benzene	ND	ug/L	2.0	1		05/14/19 00:53	71-43-2	
Bromobenzene	ND	ug/L	1.0	1		05/14/19 00:53	108-86-1	
Bromochloromethane	ND	ug/L	1.0	1		05/14/19 00:53	74-97-5	
Bromodichloromethane	ND	ug/L	10.0	1		05/14/19 00:53	75-27-4	
Bromoform	ND	ug/L	10.0	1		05/14/19 00:53	75-25-2	
Bromomethane	ND	ug/L	10.0	1		05/14/19 00:53	74-83-9	
2-Butanone (MEK)	ND	ug/L	5.0	1		05/14/19 00:53	78-93-3	
Carbon tetrachloride	ND	ug/L	2.0	1		05/14/19 00:53	56-23-5	
Chlorobenzene	ND	ug/L	10.0	1		05/14/19 00:53	108-90-7	
Chloroethane	ND	ug/L	5.0	1		05/14/19 00:53	75-00-3	
Chloroform	ND	ug/L	2.0	1		05/14/19 00:53	67-66-3	
Chloromethane	ND	ug/L	10.0	1		05/14/19 00:53	74-87-3	
2-Chlorotoluene	ND	ug/L	1.0	1		05/14/19 00:53	95-49-8	
4-Chlorotoluene	ND	ug/L	1.0	1		05/14/19 00:53	106-43-4	
1,2-Dibromo-3-chloropropane	ND	ug/L	2.0	1		05/14/19 00:53	96-12-8	
Dibromochloromethane	ND	ug/L	10.0	1		05/14/19 00:53	124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/L	2.0	1		05/14/19 00:53	106-93-4	
Dibromomethane	ND	ug/L	1.0	1		05/14/19 00:53	74-95-3	
1,2-Dichlorobenzene	ND	ug/L	10.0	1		05/14/19 00:53	95-50-1	
1,3-Dichlorobenzene	ND	ug/L	10.0	1		05/14/19 00:53	541-73-1	
1,4-Dichlorobenzene	ND	ug/L	10.0	1		05/14/19 00:53	106-46-7	
Dichlorodifluoromethane	ND	ug/L	1.0	1		05/14/19 00:53	75-71-8	

Project: 825 Warner Street 19-064

Pace Project No.: 2618256

Sample: B3	Lab ID: 2618256006		Collected: 05/07/1	9 11:24	Received: 05/07/19 13:46 Matrix: Water			
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260B MSV	Analytical Meth	nod: EPA 82	260B					
1,1-Dichloroethane	ND	ug/L	2.0	1		05/14/19 00:53	75-34-3	
1,2-Dichloroethane	ND	ug/L	2.0	1		05/14/19 00:53	107-06-2	
1,1-Dichloroethene	ND	ug/L	2.0	1		05/14/19 00:53	75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		05/14/19 00:53	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	2.0	1		05/14/19 00:53	156-60-5	
1,2-Dichloropropane	ND	ug/L	2.0	1		05/14/19 00:53	78-87-5	
1,3-Dichloropropane	ND	ug/L	1.0	1		05/14/19 00:53	142-28-9	
2,2-Dichloropropane	ND	ug/L	1.0	1		05/14/19 00:53	594-20-7	
1,1-Dichloropropene	ND	ug/L	1.0	1		05/14/19 00:53	563-58-6	
cis-1,3-Dichloropropene	ND	ug/L	2.0	1		05/14/19 00:53	10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	2.0	1		05/14/19 00:53	10061-02-6	
Diisopropyl ether	ND	ug/L	10.0	1		05/14/19 00:53	108-20-3	
Ethylbenzene	ND	ug/L	2.0	1		05/14/19 00:53	100-41-4	
Hexachloro-1,3-butadiene	ND	ug/L	10.0	1		05/14/19 00:53	87-68-3	
2-Hexanone	ND	ug/L	5.0	1		05/14/19 00:53	591-78-6	
p-Isopropyltoluene	ND	ug/L	1.0	1		05/14/19 00:53	99-87-6	
Methylene Chloride	ND	ug/L	5.0	1		05/14/19 00:53	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		05/14/19 00:53	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	10.0	1		05/14/19 00:53	1634-04-4	
Naphthalene	2.9	ug/L	1.0	1		05/14/19 00:53	91-20-3	
Styrene	ND	ug/L	1.0	1		05/14/19 00:53	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		05/14/19 00:53	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	2.0	1		05/14/19 00:53	79-34-5	
Tetrachloroethene	ND	ug/L	2.0	1		05/14/19 00:53	127-18-4	
Toluene	ND	ug/L	2.0	1		05/14/19 00:53	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		05/14/19 00:53	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		05/14/19 00:53	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	2.0	1		05/14/19 00:53	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	2.0	1		05/14/19 00:53	79-00-5	
Trichloroethene	ND	ug/L	2.0	1		05/14/19 00:53	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		05/14/19 00:53	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1		05/14/19 00:53	96-18-4	
Vinyl acetate	ND	ug/L	2.0	1		05/14/19 00:53	108-05-4	
Vinyl chloride	ND	ug/L	10.0	1		05/14/19 00:53	75-01-4	
Xylene (Total)	ND	ug/L	2.0	1		05/14/19 00:53	1330-20-7	
m&p-Xylene	ND	ug/L	1.0	1		05/14/19 00:53	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		05/14/19 00:53	95-47-6	
Surrogates		-						
1,2-Dichloroethane-d4 (S)	101	%.	81-119	1		05/14/19 00:53	17060-07-0	
Dibromofluoromethane (S)	106	%.	82-114	1		05/14/19 00:53	1868-53-7	
4-Bromofluorobenzene (S)	89	%.	82-120	1		05/14/19 00:53	460-00-4	
Toluene-d8 (S)	86	%.	82-109	1		05/14/19 00:53	2037-26-5	

Project: 825 Warner Street 19-064

Pace Project No.: 2618256

Sample: Trip Blank	Lab ID: 261	8256007	Collected: 05/07/1	9 00:00	Received: 05/07/19 13:46		
Parameters	Results	Units	Report Limit	DF	Prepared Analyze	d CAS No.	Qual
8260B MSV	Analytical Meth	nod: EPA 8	260B				
Acetone	ND	ug/L	25.0	1	05/14/19 01	1:19 67-64-1	
Benzene	ND	ug/L	2.0	1	05/14/19 01	:19 71-43-2	
Bromobenzene	ND	ug/L	1.0	1	05/14/19 01	:19 108-86-1	
Bromochloromethane	ND	ug/L	1.0	1	05/14/19 01	:19 74-97-5	
Bromodichloromethane	ND	ug/L	10.0	1	05/14/19 01	:19 75-27-4	
Bromoform	ND	ug/L	10.0	1	05/14/19 01	:19 75-25-2	
Bromomethane	ND	ug/L	10.0	1	05/14/19 01	:19 74-83-9	
2-Butanone (MEK)	ND	ug/L	5.0	1	05/14/19 01	:19 78-93-3	
Carbon tetrachloride	ND	ug/L	2.0	1	05/14/19 01	:19 56-23-5	
Chlorobenzene	ND	ug/L	10.0	1	05/14/19 01	1:19 108-90-7	
Chloroethane	ND	ug/L	5.0	1	05/14/19 01	1:19 75-00-3	
Chloroform	ND	ug/L	2.0	1	05/14/19 01	:19 67-66-3	
Chloromethane	ND	ug/L	10.0	1	05/14/19 01	1:19 74-87-3	
2-Chlorotoluene	ND	ug/L	1.0	1	05/14/19 01	1:19 95-49-8	
4-Chlorotoluene	ND	ua/L	1.0	1	05/14/19 01	1:19 106-43-4	
1.2-Dibromo-3-chloropropane	ND	ug/L	2.0	1	05/14/19 01	:19 96-12-8	
Dibromochloromethane	ND	ug/L	10.0	1	05/14/19 01	1:19 124-48-1	
1.2-Dibromoethane (EDB)	ND	ua/L	2.0	1	05/14/19 01	1:19 106-93-4	
Dibromomethane	ND	ua/L	1.0	1	05/14/19 01	:19 74-95-3	
1.2-Dichlorobenzene	ND	ua/L	10.0	1	05/14/19 01	:19 95-50-1	
1 3-Dichlorobenzene	ND	ua/l	10.0	1	05/14/19.01	19 541-73-1	
1.4-Dichlorobenzene	ND	ug/L	10.0	1	05/14/19 01	1:19 106-46-7	
Dichlorodifluoromethane	ND	ua/L	1.0	1	05/14/19 01	:19 75-71-8	
1.1-Dichloroethane	ND	ua/L	2.0	1	05/14/19 01	:19 75-34-3	
1 2-Dichloroethane	ND	ua/l	2.0	1	05/14/19.01	19 107-06-2	
1 1-Dichloroethene	ND	ua/l	20	1	05/14/19 01	19 75-35-4	
cis-1.2-Dichloroethene	ND	ua/L	1.0	1	05/14/19 01	1:19 156-59-2	
trans-1 2-Dichloroethene	ND	ua/l	20	1	05/14/19.01	19 156-60-5	
1 2-Dichloropropane	ND	ua/l	20	1	05/14/19 01	1.19 78-87-5	
1.3-Dichloropropane	ND	ug/L	1.0	1	05/14/19 0	1.19 142-28-9	
2 2-Dichloropropane	ND	ug/L	1.0	1	05/14/19 0	19 594-20-7	
1 1-Dichloropropene	ND	ug/L	1.0	1	05/14/19 0	119 563-58-6	
cis-1 3-Dichloropropene	ND	ua/l	20	1	05/14/19 02	1.19 10061-01-5	
trans-1 3-Dichloropropene	ND	ua/l	20	1	05/14/19 02	1.19 10061-02-6	
Diisopropyl ether	ND	ug/L	10.0	1	05/14/19 0	1.19 108-20-3	
Ethylbenzene	ND	ug/L	20	1	05/14/19 0	1.19 100-41-4	
Hexachloro-1 3-butadiene	ND	ug/L	10.0	1	05/14/19 0	1.19 87-68-3	
2-Hexanone	ND	ug/L	5.0	1	05/14/19 0	1.10 591-78-6	
n-Isopropyltoluene		ug/L	1.0	1	05/14/19 0	1.10 00-87-6	
Methylene Chloride		ug/L	5.0	1	05/14/19 0	1.10 75-09-2	
4-Methyl-2-pentanone (MIBK)		ug/L	5.0	1	05/14/19 0	1.19 108-10-1	
Methyl_tert_butyl_ether		ug/L	10.0	1	05/14/19 0	1.19 1634-04-4	
Nanhthalene		ug/L	10.0	1	05/17/10 0	1.10 01_20_2	
Styrono		ug/L	1.0	1	05/14/19 0	1.10 100 42 5	
1 1 1 2 Totrachloroothano	שאו סוא	ug/L	1.0	1	05/14/19 0	110 630 20 6	
1 1 2 2 Totrachloraethana	ט או חוא	ug/L	1.0	1	05/14/19 0	10 70 24 5	
Totrachloroothone	ט או חוא	ug/L	2.0	1	05/14/19 0	10 107 10 1	
I CHACHIOI U CHICHE	ND.	uy/L	2.0	I	03/14/19 0	.13 121-10-4	

Project: 825 Warner Street 19-064

Pace Project No.: 2618256

Sample: Trip Blank	Lab ID: 2618	3256007	Collected: 05/07/1	9 00:00	Received: 05	/07/19 13:46 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260B MSV	Analytical Meth	od: EPA 82	260B					
Toluene	ND	ug/L	2.0	1		05/14/19 01:19	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		05/14/19 01:19	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		05/14/19 01:19	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	2.0	1		05/14/19 01:19	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	2.0	1		05/14/19 01:19	79-00-5	
Trichloroethene	ND	ug/L	2.0	1		05/14/19 01:19	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		05/14/19 01:19	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1		05/14/19 01:19	96-18-4	
Vinyl acetate	ND	ug/L	2.0	1		05/14/19 01:19	108-05-4	
Vinyl chloride	ND	ug/L	10.0	1		05/14/19 01:19	75-01-4	
Xylene (Total)	ND	ug/L	2.0	1		05/14/19 01:19	1330-20-7	
m&p-Xylene	ND	ug/L	1.0	1		05/14/19 01:19	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		05/14/19 01:19	95-47-6	
Surrogates								
1,2-Dichloroethane-d4 (S)	99	%.	81-119	1		05/14/19 01:19	17060-07-0	
Dibromofluoromethane (S)	104	%.	82-114	1		05/14/19 01:19	1868-53-7	
4-Bromofluorobenzene (S)	88	%.	82-120	1		05/14/19 01:19	460-00-4	
Toluene-d8 (S)	86	%.	82-109	1		05/14/19 01:19	2037-26-5	

Project: 825 Warner Street 19-064

Pace Project No.: 2618256

Sample: B1-3-4'	Lab ID: 261	8256008	Collected: 05/07/1	9 09:05	5 Received: 05	5/07/19 13:46 N	latrix: Solid	
Results reported on a "dry wei	ight" basis and are adj	usted for p	ercent moisture, sa	mple s	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010D MET ICP	Analytical Meth	nod: EPA 60	10D Preparation Me	ethod: E	PA 3050B			
Arsenic	ND	mg/kg	3.2	1	05/09/19 10:08	05/11/19 03:46	7440-38-2	
Barium	63.9	mg/kg	1.1	1	05/09/19 10:08	05/11/19 03:46	7440-39-3	
Cadmium	3.7	mg/kg	1.1	1	05/09/19 10:08	05/11/19 03:46	7440-43-9	
Chromium	47.5	mg/kg	1.1	1	05/09/19 10:08	05/11/19 03:46	7440-47-3	
Lead	39.2	mg/kg	2.7	1	05/09/19 10:08	05/11/19 03:46	7439-92-1	
Selenium	ND	mg/kg	4.3	1	05/09/19 10:08	05/11/19 03:46	7782-49-2	
Silver	ND	mg/kg	1.1	1	05/09/19 10:08	05/11/19 03:46	7440-22-4	
7471 Mercury	Analytical Meth	nod: EPA 74	71B Preparation Me	ethod: E	PA 7471B			
Mercury	ND	mg/kg	0.27	1	05/13/19 14:20	05/14/19 11:10	7439-97-6	
Percent Moisture	Analytical Meth	nod: Pace S	OP #204					
Percent Moisture	14.6	%	0.10	1		05/13/19 10:04		

Project:	825 Warner Street	19-064										
Pace Project No.:	2618256											
QC Batch:	27845		Analy	sis Meth	od: E	PA 7471B						
QC Batch Method:	EPA 7471B		Analy	sis Desc	ription: 7	471 Mercu	ry					
Associated Lab San	nples: 26182560	02, 2618256003										
METHOD BLANK:	125382			Matrix: S	Solid							
Associated Lab San	nples: 26182560	02, 2618256003										
			Blar	۱k	Reporting							
Paran	neter	Units	Res	ult	Limit	Anal	yzed	Qualifier	S			
Mercury		mg/kg		ND	0.25	5 05/08/1	9 21:18					
LABORATORY COM	NTROL SAMPLE:	125383										
			Spike	L	CS	LCS	% R	ec				
Paran	neter	Units	Conc.	Re	esult	% Rec	Limi	ts	Qualifiers	_		
Mercury		mg/kg	0.3	3	0.39	11	7 8	30-120				
MATRIX SPIKE & M	IATRIX SPIKE DUP	LICATE: 1256	54		125655							
			MS	MSD								
Parameter	. Units	2618124001 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Mercury	mg/kg	ND	0.33	0.33	3 0.44	0.44	106	105	80-120	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	825 Warner Street	19-064										
Pace Project No.:	2618256											
QC Batch:	28248		Analy	sis Metho	od: E	EPA 7471B						
QC Batch Method:	EPA 7471B		Analy	/sis Descr	iption: 7	471 Mercu	ry					
Associated Lab Sar	nples: 26182560	08										
METHOD BLANK:	127294			Matrix: S	olid							
Associated Lab Sar	nples: 26182560	08										
			Blar	ık	Reporting							
Paran	neter	Units	Res	ult	Limit	Anal	/zed	Qualifier	S			
Mercury		mg/kg		ND	0.28	5 05/14/1	9 11:05					
LABORATORY COI	NTROL SAMPLE:	127295										
			Spike	LC	CS	LCS	% Re	ec				
Paran	neter	Units	Conc.	Re	sult	% Rec	Limit	S	Qualifiers			
Mercury		mg/kg	0.3	3	0.34	10	4 8	0-120				
MATRIX SPIKE & M	IATRIX SPIKE DUP	LICATE: 1272	96		127297							
			MS	MSD								
		2618256008	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Mercury	mg/kg	ND	0.36	0.36	0.43	0.43	106	105	80-120	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 825 Warner Street 19-064

Pace Project No.: 2618256

QC Batch: 280	03		Anal	ysis Me	thod:	E	PA 6010D						
QC Batch Method: EPA	3050B		Anal	ysis De	scription:	60	010D MET						
Associated Lab Samples:	261825600	2, 2618256003											
METHOD BLANK: 1259	14			Matrix	Solid								
Associated Lab Samples:	261825600	2, 2618256003											
			Blai	nk	Reportir	ng							
Parameter		Units	Res	ult	Limit		Analy	/zed	Qualifier	S			
Arsenic		mg/kg		ND		3.0	05/09/19	9 07:55					
Barium		mg/kg		ND		1.0	05/09/19	9 07:55					
Cadmium		mg/kg		ND		1.0	05/09/19	9 07:55					
Chromium		mg/kg		ND		1.0	05/09/19	9 07:55					
Lead		mg/kg		ND		2.5	05/09/19	9 07:55					
Selenium		mg/kg		ND		4.0	05/09/19	9 07:55					
Silver		mg/kg		ND		1.0	05/09/19	9 07:55					
LABORATORY CONTROL	SAMPLE:	125915											
			Spike		LCS		LCS	%	Rec				
Parameter		Units	Conc.		Result		% Rec	Lir	nits	Qualifiers			
Arsenic		mg/kg	10	00	103		103	3	80-120		_		
Barium		mg/kg	10	00	106		106	6	80-120				
Cadmium		mg/kg	10	00	104		104	4	80-120				
Chromium		mg/kg	10	00	107		107	7	80-120				
Lead		mg/kg	10	00	104		104	4	80-120				
Selenium		mg/kg	10	00	102		102	2	80-120				
Silver		mg/kg	10	00	104		104	4	80-120				
MATRIX SPIKE & MATRIX		ICATE: 1259	16		1259	17							
	_		MS	MSD									
		2618256002	Spike	Spike	MS		MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc	Resul	t	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Arsenic	mg/kg	27.9	121	1	21 1	36	150	8	9 101	75-125	10	20	
Barium	mg/kg	276	121	1	21 4	80	308	16	9 26	75-125	44	20	M1,R1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

121

121

121

121

121

131

159

102

125

10700

130

233

2360

95.4

124

84

106

4020

85

104

84

167

79

102

-2920

75-125

75-125

75-125

75-125

75-125

0 20

38

128

7 20

1 20

20 M1,R1

20 M1,R1

REPORT OF LABORATORY ANALYSIS

Cadmium

Chromium

Selenium

Lead

Silver

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

28.9

31.9

5880

ND

ND

121

121

121

121

121

Project [.]	825 Warner Street 19-064
1 10/000	

Pace Project No.: 2618256					
QC Batch: 28077		Analysis Meth	nod: Ef	EPA 6010D	
QC Batch Method: EPA 3050B		Analysis Des	cription: 60	10D MET	
Associated Lab Samples: 2618256008					
METHOD BLANK: 126366		Matrix:	Solid		
Associated Lab Samples: 2618256008					
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Arsenic	mg/kg	ND	2.9	05/11/19 02:19	
Barium	mg/kg	ND	0.98	05/11/19 02:19	
Cadmium	mg/kg	ND	0.98	05/11/19 02:19	
Chromium	mg/kg	ND	0.98	05/11/19 18:40	
Lead	mg/kg	ND	2.5	05/11/19 02:19	
Selenium	mg/kg	ND	3.9	05/11/19 02:19	
Silver	mg/kg	ND	0.98	05/11/19 02:19	
Chromium Lead Selenium Silver	mg/kg mg/kg mg/kg mg/kg	ND ND ND ND	0.98 2.5 3.9 0.98	05/11/19 18:40 05/11/19 02:19 05/11/19 02:19 05/11/19 02:19	
LABORATORY CONTROL SAMPLE: 1	26367				

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic	mg/kg	98	107	109	80-120	
Barium	mg/kg	98	95.0	97	80-120	
Cadmium	mg/kg	98	105	107	80-120	
Chromium	mg/kg	98	99.4	101	80-120	
Lead	mg/kg	98	98.8	101	80-120	
Selenium	mg/kg	98	111	114	80-120	
Silver	mg/kg	98	104	106	80-120	

MATRIX SPIKE & MATRIX SPI	KE DUPL	ICATE: 1263	68		126369							
			MS	MSD								
		2618259001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Arsenic	mg/kg	ND	120	113	115	114	95	101	75-125	0	20	
Barium	mg/kg	7.3	120	113	114	111	89	92	75-125	2	20	
Cadmium	mg/kg	1.4	120	113	119	117	98	103	75-125	1	20	
Chromium	mg/kg	6.2	120	113	129	127	103	107	75-125	1	20	
Lead	mg/kg	5.4	120	113	115	114	91	96	75-125	0	20	
Selenium	mg/kg	ND	120	113	117	117	98	103	75-125	1	20	
Silver	mg/kg	ND	120	113	125	124	104	109	75-125	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 825 Warner Street 19-064

Pace Project No.: 2618256

QC Batch: 2795	5	Analysis Method:		EPA 8260B			
QC Batch Method: EPA	5035	Analysis Des	cription: 82	60 MSV 5035			
Associated Lab Samples:	2618256001, 2618256002						
METHOD BLANK: 125799)	Matrix:	Solid				
Associated Lab Samples:	2618256001 2618256002						
	2010200001, 2010200002	Blank	Reporting				
Parameter	Units	Result	Limit	Analyzed	Qualifiers		
1,1,1,2- letrachioroethane	ug/kg	ND	5.0	05/07/19 20:24			
	ug/kg	ND	5.0	05/07/19 20:24			
1,1,2,2- letrachloroethane	ug/kg	ND	5.0	05/07/19 20:24			
1,1,2-Trichloroethane	ug/kg	ND	5.0	05/07/19 20:24			
1,1-Dichloroethane	ug/kg	ND	5.0	05/07/19 20:24			
1,1-Dichloroethene	ug/kg	ND	5.0	05/07/19 20:24			
1,1-Dichloropropene	ug/kg	ND	5.0	05/07/19 20:24			
1,2,3-Trichlorobenzene	ug/kg	ND	5.0	05/07/19 20:24			
1,2,3-Trichloropropane	ug/kg	ND	5.0	05/07/19 20:24			
1,2,4-Trichlorobenzene	ug/kg	ND	5.0	05/07/19 20:24			
1,2,4-Trimethylbenzene	ug/kg	ND	5.0	05/07/19 20:24			
1,2-Dibromo-3-chloropropar	ne ug/kg	ND	5.0	05/07/19 20:24			
1,2-Dibromoethane (EDB)	ug/kg	ND	5.0	05/07/19 20:24			
1,2-Dichlorobenzene	ug/kg	ND	5.0	05/07/19 20:24			
1,2-Dichloroethane	ug/kg	ND	5.0	05/07/19 20:24			
1,2-Dichloropropane	ug/kg	ND	5.0	05/07/19 20:24			
1,3,5-Trimethylbenzene	ug/kg	ND	5.0	05/07/19 20:24			
1,3-Dichlorobenzene	ug/kg	ND	5.0	05/07/19 20:24			
1,3-Dichloropropane	ug/kg	ND	5.0	05/07/19 20:24			
1,4-Dichlorobenzene	ug/kg	ND	5.0	05/07/19 20:24			
2,2-Dichloropropane	ug/kg	ND	5.0	05/07/19 20:24			
2-Butanone (MEK)	ug/kg	ND	100	05/07/19 20:24			
2-Chlorotoluene	ug/kg	ND	5.0	05/07/19 20:24			
2-Hexanone	ug/kg	ND	50.0	05/07/19 20:24			
4-Chlorotoluene	ug/kg	ND	5.0	05/07/19 20:24			
4-Methyl-2-pentanone (MIBI	K) ug/kg	ND	50.0	05/07/19 20:24			
Acetone	ug/kg	ND	100	05/07/19 20:24			
Acrolein	ug/kg	ND	50.0	05/07/19 20:24			
Acrylonitrile	ug/kg	ND	50.0	05/07/19 20:24			
Benzene	ug/kg	ND	5.0	05/07/19 20:24			
Bromobenzene	ug/kg	ND	5.0	05/07/19 20:24			
Bromochloromethane	ug/kg	ND	5.0	05/07/19 20:24			
Bromodichloromethane	ug/kg	ND	5.0	05/07/19 20:24			
Bromoform	ug/kg	ND	5.0	05/07/19 20:24			
Bromomethane	ug/kg	ND	10.0	05/07/19 20:24			
Carbon disulfide	ug/kg	ND	10.0	05/07/19 20:24			
Carbon tetrachloride	ug/kg	ND	5.0	05/07/19 20:24			
Chlorobenzene	ug/kg	ND	10.0	05/07/19 20:24			
Chloroethane	ug/kg	ND	5.0	05/07/19 20:24			
Chloroform	ug/kg	ND	5.0	05/07/19 20:24			
Chloromethane	ug/kg	ND	10.0	05/07/19 20:24	v2		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 825 Warner Street 19-064

Pace Project No.: 2618256

METHOD BLANK: 125799	9	Matrix:	Solid		
Associated Lab Samples:	2618256001, 2618256002	Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
cis-1,2-Dichloroethene	ug/kg	ND	5.0	05/07/19 20:24	
cis-1,3-Dichloropropene	ug/kg	ND	5.0	05/07/19 20:24	
Dibromochloromethane	ug/kg	ND	5.0	05/07/19 20:24	
Dibromomethane	ug/kg	ND	5.0	05/07/19 20:24	
Dichlorodifluoromethane	ug/kg	ND	10.0	05/07/19 20:24	
Diisopropyl ether	ug/kg	ND	5.0	05/07/19 20:24	
Ethylbenzene	ug/kg	ND	5.0	05/07/19 20:24	
Isopropylbenzene (Cumene) ug/kg	ND	5.0	05/07/19 20:24	
m&p-Xylene	ug/kg	ND	5.0	05/07/19 20:24	
Methyl-tert-butyl ether	ug/kg	ND	5.0	05/07/19 20:24	
Methylene Chloride	ug/kg	ND	10.0	05/07/19 20:24	
n-Butylbenzene	ug/kg	ND	5.0	05/07/19 20:24	
n-Propylbenzene	ug/kg	ND	5.0	05/07/19 20:24	
Naphthalene	ug/kg	ND	5.0	05/07/19 20:24	
o-Xylene	ug/kg	ND	5.0	05/07/19 20:24	
p-Isopropyltoluene	ug/kg	ND	5.0	05/07/19 20:24	
sec-Butylbenzene	ug/kg	ND	5.0	05/07/19 20:24	
Styrene	ug/kg	ND	5.0	05/07/19 20:24	
tert-Butylbenzene	ug/kg	ND	5.0	05/07/19 20:24	
Tetrachloroethene	ug/kg	ND	5.0	05/07/19 20:24	
Toluene	ug/kg	ND	5.0	05/07/19 20:24	
trans-1,2-Dichloroethene	ug/kg	ND	5.0	05/07/19 20:24	
trans-1,3-Dichloropropene	ug/kg	ND	5.0	05/07/19 20:24	
Trichloroethene	ug/kg	ND	5.0	05/07/19 20:24	
Trichlorofluoromethane	ug/kg	ND	5.0	05/07/19 20:24	
Vinyl acetate	ug/kg	ND	10.0	05/07/19 20:24	
Vinyl chloride	ug/kg	ND	10.0	05/07/19 20:24	
Xylene (Total)	ug/kg	ND	10.0	05/07/19 20:24	
1,2-Dichloroethane-d4 (S)	%.	111	69-133	05/07/19 20:24	
4-Bromofluorobenzene (S)	%.	114	77-124	05/07/19 20:24	
Dibromofluoromethane (S)	%.	105	73-114	05/07/19 20:24	
Toluene-d8 (S)	%.	104	85-109	05/07/19 20:24	

METHOD BLANK: 125803

Matrix: Solid

Associated Lab Samples: 2618256001, 2618256002

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/kg	ND	250	05/07/19 20:49	
1,1,1-Trichloroethane	ug/kg	ND	250	05/07/19 20:49	
1,1,2,2-Tetrachloroethane	ug/kg	ND	250	05/07/19 20:49	
1,1,2-Trichloroethane	ug/kg	ND	250	05/07/19 20:49	
1,1-Dichloroethane	ug/kg	ND	250	05/07/19 20:49	
1,1-Dichloroethene	ug/kg	ND	250	05/07/19 20:49	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 825 Warner Street 19-064

Pace Project No.: 2618256

METHOD BLANK: 125803		Matrix:	Solid		
Associated Lab Samples:	2618256001, 2618256002				
	·	Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1-Dichloropropene	ug/kg	ND	250	05/07/19 20:49	
1,2,3-Trichlorobenzene	ug/kg	ND	250	05/07/19 20:49	
1,2,3-Trichloropropane	ug/kg	ND	250	05/07/19 20:49	
1,2,4-Trichlorobenzene	ug/kg	ND	250	05/07/19 20:49	
1,2,4-Trimethylbenzene	ug/kg	ND	250	05/07/19 20:49	
1,2-Dibromo-3-chloropropan	e ug/kg	ND	250	05/07/19 20:49	
1,2-Dibromoethane (EDB)	ug/kg	ND	250	05/07/19 20:49	
1,2-Dichlorobenzene	ug/kg	ND	250	05/07/19 20:49	
1,2-Dichloroethane	ug/kg	ND	250	05/07/19 20:49	
1,2-Dichloropropane	ug/kg	ND	250	05/07/19 20:49	
1,3,5-Trimethylbenzene	ug/kg	ND	250	05/07/19 20:49	
1,3-Dichlorobenzene	ug/kg	ND	250	05/07/19 20:49	
1,3-Dichloropropane	ug/kg	ND	250	05/07/19 20:49	
1,4-Dichlorobenzene	ug/kg	ND	250	05/07/19 20:49	
2,2-Dichloropropane	ug/kg	ND	250	05/07/19 20:49	
2-Butanone (MEK)	ug/kg	ND	5000	05/07/19 20:49	
2-Chlorotoluene	ug/kg	ND	250	05/07/19 20:49	
2-Hexanone	ug/kg	ND	2500	05/07/19 20:49	
4-Chlorotoluene	ug/kg	ND	250	05/07/19 20:49	
4-Methyl-2-pentanone (MIBk	() ua/ka	ND	2500	05/07/19 20:49	
Acetone	y ua/ka	ND	5000	05/07/19 20:49	
Acrolein	ug/kg	ND	2500	05/07/19 20:49	
Acrylonitrile	ug/kg	ND	2500	05/07/19 20:49	
Benzene	ug/kg	ND	250	05/07/19 20:49	
Bromobenzene	ua/ka	ND	250	05/07/19 20:49	
Bromochloromethane	ua/ka	ND	250	05/07/19 20:49	
Bromodichloromethane	ua/ka	ND	250	05/07/19 20:49	
Bromoform	ua/ka	ND	250	05/07/19 20:49	
Bromomethane	ua/ka	ND	500	05/07/19 20:49	
Carbon disulfide	ua/ka	ND	500	05/07/19 20:49	
Carbon tetrachloride	ua/ka	ND	250	05/07/19 20:49	
Chlorobenzene	ua/ka	ND	500	05/07/19 20:49	
Chloroethane	ua/ka	ND	250	05/07/19 20:49	
Chloroform	ua/ka	ND	250	05/07/19 20:49	
Chloromethane	ua/ka	ND	500	05/07/19 20:49	v2
cis-1.2-Dichloroethene	ua/ka	ND	250	05/07/19 20:49	· -
cis-1.3-Dichloropropene	ua/ka	ND	250	05/07/19 20:49	
Dibromochloromethane	ua/ka	ND	250	05/07/19 20:49	
Dibromomethane	ua/ka	ND	250	05/07/19 20:49	
Dichlorodifluoromethane	ua/ka	ND	500	05/07/19 20:49	
Diisopropyl ether	ua/ka	ND	250	05/07/19 20:49	
Ethylbenzene	ua/ka	ND	250	05/07/19 20:49	
Isopropylbenzene (Cumene)	ua/ka	ND	250	05/07/19 20:49	
m&p-Xvlene	ua/ka		250	05/07/19 20:49	
Methyl-tert-butyl ether	ua/ka	ND	250	05/07/19 20:49	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		200		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

# **REPORT OF LABORATORY ANALYSIS**



Matrix: Solid

Project: 825 Warner Street 19-064 Pace Project No.: 2618256

# METHOD BLANK: 125803

Associated Lab Samples: 2618256001, 2618256002

Parameter	Linits	Blank Result	Reporting	Analyzed	Qualifiers
				/ analyzed	
Methylene Chloride	ug/kg	ND	500	05/07/19 20:49	
n-Butylbenzene	ug/kg	ND	250	05/07/19 20:49	
n-Propylbenzene	ug/kg	ND	250	05/07/19 20:49	
Naphthalene	ug/kg	ND	250	05/07/19 20:49	
o-Xylene	ug/kg	ND	250	05/07/19 20:49	
p-Isopropyltoluene	ug/kg	ND	250	05/07/19 20:49	
sec-Butylbenzene	ug/kg	ND	250	05/07/19 20:49	
Styrene	ug/kg	ND	250	05/07/19 20:49	
tert-Butylbenzene	ug/kg	ND	250	05/07/19 20:49	
Tetrachloroethene	ug/kg	ND	250	05/07/19 20:49	
Toluene	ug/kg	ND	250	05/07/19 20:49	
trans-1,2-Dichloroethene	ug/kg	ND	250	05/07/19 20:49	
trans-1,3-Dichloropropene	ug/kg	ND	250	05/07/19 20:49	
Trichloroethene	ug/kg	ND	250	05/07/19 20:49	
Trichlorofluoromethane	ug/kg	ND	250	05/07/19 20:49	
Vinyl acetate	ug/kg	ND	500	05/07/19 20:49	
Vinyl chloride	ug/kg	ND	500	05/07/19 20:49	
Xylene (Total)	ug/kg	ND	500	05/07/19 20:49	
1,2-Dichloroethane-d4 (S)	%.	111	69-133	05/07/19 20:49	
4-Bromofluorobenzene (S)	%.	111	77-124	05/07/19 20:49	
Dibromofluoromethane (S)	%.	106	73-114	05/07/19 20:49	
Toluene-d8 (S)	%.	104	85-109	05/07/19 20:49	

#### LABORATORY CONTROL SAMPLE: 125800

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/kg		63.1	126	61-133	
1,1,1-Trichloroethane	ug/kg	50	52.0	104	71-149	
1,1,2,2-Tetrachloroethane	ug/kg	50	54.8	110	70-134	
1,1,2-Trichloroethane	ug/kg	50	53.5	107	74-139	
1,1-Dichloroethane	ug/kg	50	51.0	102	81-140	
1,1-Dichloroethene	ug/kg	50	50.4	101	68-150	
1,1-Dichloropropene	ug/kg	50	49.4	99	71-139	
1,2,3-Trichlorobenzene	ug/kg	50	58.5	117	40-164	
1,2,3-Trichloropropane	ug/kg	50	55.6	111	72-141	
1,2,4-Trichlorobenzene	ug/kg	50	57.2	114	49-147	
1,2,4-Trimethylbenzene	ug/kg	50	55.9	112	64-137	
1,2-Dibromo-3-chloropropane	ug/kg	50	53.1	106	80-134	
1,2-Dibromoethane (EDB)	ug/kg	50	53.0	106	70-143	
1,2-Dichlorobenzene	ug/kg	50	55.9	112	59-162	
1,2-Dichloroethane	ug/kg	50	48.5	97	69-135	
1,2-Dichloropropane	ug/kg	50	52.6	105	68-147	
1,3,5-Trimethylbenzene	ug/kg	50	56.4	113	68-138	
1.3-Dichlorobenzene	ug/kg	50	55.9	112	67-152	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

# **REPORT OF LABORATORY ANALYSIS**



#### Project: 825 Warner Street 19-064

Pace Project No.: 2618256

#### LABORATORY CONTROL SAMPLE: 125800

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,3-Dichloropropane	ua/ka		53.1	106	67-143	
1,4-Dichlorobenzene	ug/kg	50	55.2	110	72-138	
2.2-Dichloropropane	ug/kg	50	52.8	106	56-162	
2-Butanone (MEK)	ug/kg	100	96.2J	96	52-163	
2-Chlorotoluene	ug/kg	50	55.8	112	69-142	
2-Hexanone	ug/kg	100	98.5	98	60-186	
4-Chlorotoluene	ug/kg	50	54.5	109	64-137	
4-Methyl-2-pentanone (MIBK)	ug/kg	100	100	100	80-129	
Acetone	ug/kg	100	87.1J	87	52-160	
Acrolein	ug/kg	100	83.4	83	42-183	
Acrylonitrile	ug/kg	200	182	91	63-133	
Benzene	ug/kg	50	49.1	98	70-141	
Bromobenzene	ug/kg	50	53.8	108	70-143	
Bromochloromethane	ug/kg	50	54.6	109	74-141	
Bromodichloromethane	ug/kg	50	57.4	115	68-125	
Bromoform	ug/kg	50	53.7	107	65-140	
Bromomethane	ug/kg	50	47.3	95	41-148	
Carbon disulfide	ug/kg	100	112	112	72-138	
Carbon tetrachloride	ug/kg	50	53.3	107	57-146	
Chlorobenzene	ug/kg	50	56.2	112	65-133	
Chloroethane	ug/kg	50	49.4	99	48-143	
Chloroform	ug/kg	50	50.6	101	72-138	
Chloromethane	ug/kg	50	39.8	80	41-147 v	2
cis-1,2-Dichloroethene	ug/kg	50	49.4	99	71-142	
cis-1,3-Dichloropropene	ug/kg	50	51.3	103	69-129	
Dibromochloromethane	ug/kg	50	52.1	104	64-122	
Dibromomethane	ug/kg	50	57.0	114	68-147	
Dichlorodifluoromethane	ug/kg	50	47.7	95	18-147	
Diisopropyl ether	ug/kg	50	46.0	92	62-144	
Ethylbenzene	ug/kg	50	54.4	109	70-143	
Isopropylbenzene (Cumene)	ug/kg	50	56.2	112	65-140	
m&p-Xylene	ug/kg	100	112	112	80-120	
Methyl-tert-butyl ether	ug/kg	100	104	104	80-126	
Methylene Chloride	ug/kg	50	48.7	97	71-136	
n-Butylbenzene	ug/kg	50	55.4	111	46-179	
n-Propylbenzene	ug/kg	50	54.7	109	65-150	
Naphthalene	ug/kg	50	57.5	115	47-167	
o-Xylene	ug/kg	50	56.3	113	70-141	
p-Isopropyltoluene	ug/kg	50	56.5	113	70-134	
sec-Butylbenzene	ug/kg	50	55.0	110	70-141	
Styrene	ug/kg	50	57.7	115	68-134	
tert-Butylbenzene	ug/kg	50	56.0	112	66-142	
Tetrachloroethene	ug/kg	50	53.3	107	59-144	
Toluene	ug/kg	50	52.2	104	62-142	
trans-1,2-Dichloroethene	ug/kg	50	50.9	102	71-138	
trans-1,3-Dichloropropene	ug/kg	50	52.7	105	68-131	
Trichloroethene	ug/kg	50	54.6	109	65-152	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

### **REPORT OF LABORATORY ANALYSIS**



Project: 825 Warner Street 19-064

Pace Project No.: 2618256

#### LABORATORY CONTROL SAMPLE: 125800

			Spike	LCS	LCS	% Rec	
	Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Trichloroflu	oromethane	ug/kg	50	52.7	105	64-133	
Vinyl aceta	te	ug/kg	50	48.0	96	36-122	
Vinyl chlori	de	ug/kg	50	49.3	99	53-141	
Xylene (To	tal)	ug/kg	150	168	112	61-122	
1,2-Dichlor	oethane-d4 (S)	%.			111	69-133	
4-Bromoflu	orobenzene (S)	%.			110	77-124	
Dibromoflu	oromethane (S)	%.			111	73-114	
Toluene-d8	8 (S)	%.			104	85-109	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 125801				125802								
			MS	MSD								
		2618256001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,1,1,2-Tetrachloroethane	ug/kg	ND	3830	3830	5100	5010	133	131	30-131	2	26	M1
1,1,1-Trichloroethane	ug/kg	ND	3830	3830	4410	4360	115	114	42-146	1	25	
1,1,2,2-Tetrachloroethane	ug/kg	ND	3830	3830	4850	4810	127	126	25-144	1	18	
1,1,2-Trichloroethane	ug/kg	ND	3830	3830	4490	4720	117	123	52-130	5	26	
1,1-Dichloroethane	ug/kg	ND	3830	3830	4510	4330	118	113	52-145	4	24	
1,1-Dichloroethene	ug/kg	ND	3830	3830	4340	4380	113	114	39-154	1	27	
1,1-Dichloropropene	ug/kg	ND	3830	3830	4350	4290	114	112	45-137	1	26	
1,2,3-Trichlorobenzene	ug/kg	ND	3830	3830	4930	4960	129	129	32-136	1	21	
1,2,3-Trichloropropane	ug/kg	ND	3830	3830	4690	4580	122	120	26-154	2	34	
1,2,4-Trichlorobenzene	ug/kg	ND	3830	3830	4910	4890	128	128	21-130	0	28	
1,2,4-Trimethylbenzene	ug/kg	ND	3830	3830	4350	4280	114	112	13-152	2	31	
1,2-Dibromo-3- chloropropane	ug/kg	ND	3830	3830	4430	4520	116	118	42-120	2	81	
1,2-Dibromoethane (EDB)	ug/kg	ND	3830	3830	4490	4600	117	120	39-139	2	29	
1,2-Dichlorobenzene	ug/kg	ND	3830	3830	4840	4850	126	127	10-182	0	64	
1,2-Dichloroethane	ug/kg	ND	3830	3830	4210	4260	110	111	58-118	1	23	
1,2-Dichloropropane	ug/kg	ND	3830	3830	4500	4530	117	118	51-136	1	24	
1,3,5-Trimethylbenzene	ug/kg	ND	3830	3830	4880	4780	127	125	22-146	2	31	
1,3-Dichlorobenzene	ug/kg	ND	3830	3830	4850	4740	127	124	15-161	2	42	
1,3-Dichloropropane	ug/kg	ND	3830	3830	4670	4720	122	123	45-134	1	27	
1,4-Dichlorobenzene	ug/kg	ND	3830	3830	4780	4740	125	124	15-164	1	36	
2,2-Dichloropropane	ug/kg	ND	3830	3830	4630	4510	121	118	29-149	2	27	
2-Butanone (MEK)	ug/kg	ND	7660	7660	7690	7780	100	102	22-158	1	30	
2-Chlorotoluene	ug/kg	ND	3830	3830	4620	4550	121	119	16-156	2	33	
2-Hexanone	ug/kg	ND	7660	7660	8300	8800	108	115	10-198	6	50	
4-Chlorotoluene	ug/kg	ND	3830	3830	4580	4570	119	119	11-151	0	35	
4-Methyl-2-pentanone (MIBK)	ug/kg	ND	7660	7660	8310	8560	108	112	29-135	3	33	
Acetone	ug/kg	ND	7660	7660	7150J	6810J	93	89	59-136		27	
Acrolein	ug/kg	ND	7660	7660	11300	11200	147	146	23-177	1	22	
Acrylonitrile	ug/kg	ND	15300	15300	14900	14600	97	95	38-130	2	23	
Benzene	ug/kg	ND	3830	3830	4140	4010	108	105	42-140	3	25	
Bromobenzene	ug/kg	ND	3830	3830	4690	4590	122	120	18-156	2	34	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

# **REPORT OF LABORATORY ANALYSIS**



Project: 825 Warner Street 19-064

Pace Project No.: 2618256

MATRIX SPIKE & MATRIX SI	PIKE DUPL	ICATE: 1258	01		125802							
			MS	MSD								
		2618256001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Bromochloromethane	ug/kg	 ND	3830	3830	4270	4240	112	111	59-127	1	22	
Bromodichloromethane	ug/kg	ND	3830	3830	4640	4630	121	121	39-123	0	24	
Bromoform	ug/kg	ND	3830	3830	4330	4400	113	115	30-136	1	22	
Bromomethane	ug/kg	ND	3830	3830	2070	2150	54	56	10-164	4	31	
Carbon disulfide	ug/kg	ND	7660	7660	8110	8110	106	106	55-135	0	24	
Carbon tetrachloride	ug/kg	ND	3830	3830	4370	4360	114	114	33-136	0	27	
Chlorobenzene	ug/kg	ND	3830	3830	4570	4610	119	120	28-144	1	31	
Chloroethane	ug/kg	ND	3830	3830	1840	1820	48	47	10-163	1	30	
Chloroform	ug/kg	ND	3830	3830	4290	4150	112	108	52-131	3	23	
Chloromethane	ug/kg	ND	3830	3830	3620	3620	95	94	28-149	0	28	v2
cis-1,2-Dichloroethene	ug/kg	ND	3830	3830	4210	4080	110	106	50-134	3	23	
cis-1,3-Dichloropropene	ug/kg	ND	3830	3830	4270	4380	112	114	39-125	2	28	
Dibromochloromethane	ug/kg	ND	3830	3830	4150	4120	108	108	32-118	1	29	
Dibromomethane	ug/kg	ND	3830	3830	4840	4970	126	130	50-133	3	22	
Dichlorodifluoromethane	ug/kg	ND	3830	3830	4010	3990	105	104	10-158	1	44	
Diisopropyl ether	ug/kg	ND	3830	3830	4200	4180	110	109	44-135	1	29	
Ethylbenzene	ug/kg	ND	3830	3830	4560	4530	119	118	13-164	1	33	
Isopropylbenzene	ug/kg	ND	3830	3830	4840	4860	126	127	13-156	0	33	
(Cumene)			-		00.40	0040	400	100	04.400		400	
m&p-Xylene	ug/kg	ND	7660	7660	9340	9310	122	122	34-120	0	100	M1
Methyl-tert-butyl ether	ug/kg	ND	7660	7660	8600	8510	112	111	73-131	1	36	
Methylene Chloride	ug/kg	ND	3830	3830	4130	4070	108	106	53-138	1	26	
n-Butyibenzene	ug/kg	ND	3830	3830	4530	4460	118	116	21-161	2	34	
n-Propylbenzene	ug/kg	ND	3830	3830	4600	4530	120	118	16-158	2	34	
Naphthalene	ug/kg	ND	3830	3830	4980	5100	130	133	31-150	3	30	
o-Xylene	ug/kg	ND	3830	3830	4830	4840	126	126	13-160	0	29	
p-Isopropyltoluene	ug/kg	ND	3830	3830	4340	4290	113	112	10-164	1	33	
sec-Butylbenzene	ug/kg	ND	3830	3830	4380	4280	114	112	12-164	2	34	
Styrene	ug/kg	ND	3830	3830	5130	5030	134	131	16-151	2	33	
tert-Butylbenzene	ug/kg	ND	3830	3830	4200	4090	110	107	10-160	3	33	
Tetrachloroethene	ug/kg	ND	3830	3830	4490	4460	117	116	33-141	1	32	
	ug/kg	ND	3830	3830	4330	4410	113	115	32-145	2	31	
trans-1,2-Dichloroethene	ug/kg	ND	3830	3830	4360	4300	114	112	43-144	1	26	
trans-1,3-Dichloropropene	ug/kg	ND	3830	3830	4210	4340	110	113	30-130	3	33	
Irichloroethene	ug/kg	ND	3830	3830	4110	4190	107	109	16-172	2	30	
Irichlorofluoromethane	ug/kg	ND	3830	3830	3860	3860	101	101	14-149	0	32	
Vinyl acetate	ug/kg	ND	3830	3830	4060	4080	106	107	10-120	1	/4	
Vinyl chloride	ug/kg	ND	3830	3830	4100	4100	107	107	40-140	0	28	
Xylene (Total)	ug/kg	ND	11500	11500	14200	14200	123	123	19-120	0	28	MS
1,2-Dichloroethane-d4 (S)	%.						111	110	69-133			
4-Bromofluorobenzene (S)	%.						114	110	77-124			
Dibromofluoromethane (S)	%.						108	105	73-114			
Toluene-d8 (S)	%.						104	104	85-109			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**


Project:	825 Warner S	treet 19-064					
Pace Project No.:	2618256						
OC Databi	20174		Analysia Math		A 9260D		
QC Batch:	28174			100: EF	A 8260B		
QC Batch Method:	EPA 8260B		Analysis Dese	cription: 82	60B MSV		
Associated Lab Sam	ples: 26182	256004, 2618256005, 26	618256006, 26182	256007			
METHOD BLANK:	127336		Matrix:	Water			
Associated Lab Sam	ples: 26182	256004. 2618256005. 26	318256006, 26182	256007			
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Blank	Reporting			
Param	eter	Units	Result	Limit	Analyzed	Qualifiers	
1,1,1,2-Tetrachloroet	thane	ug/L	ND	1.0	05/13/19 18:25		
1,1,1-Trichloroethane	е	ug/L	ND	2.0	05/13/19 18:25		
1,1,2,2-Tetrachloroet	thane	ug/L	ND	2.0	05/13/19 18:25		
1,1,2-Trichloroethane	e	ug/L	ND	2.0	05/13/19 18:25		
1,1-Dichloroethane		ug/L	ND	2.0	05/13/19 18:25		
1,1-Dichloroethene		ug/L	ND	2.0	05/13/19 18:25		
1,1-Dichloropropene		ug/L	ND	1.0	05/13/19 18:25		
1,2,3-Trichlorobenze	ene	ug/L	ND	1.0	05/13/19 18:25		
1,2,3-Trichloropropa	ne	ug/L	ND	1.0	05/13/19 18:25		
1,2,4-Trichlorobenze	ene	ug/L	ND	1.0	05/13/19 18:25		
1,2-Dibromo-3-chlore	opropane	ug/L	ND	2.0	05/13/19 18:25		
1,2-Dibromoethane (	(EDB)	ug/L	ND	2.0	05/13/19 18:25		
1,2-Dichlorobenzene	;	ug/L	ND	10.0	05/13/19 18:25		
1,2-Dichloroethane		ug/L	ND	2.0	05/13/19 18:25		
1,2-Dichloropropane		ug/L	ND	2.0	05/13/19 18:25		
1,3-Dichlorobenzene	9	ug/L	ND	10.0	05/13/19 18:25		
1,3-Dichloropropane		ug/L	ND	1.0	05/13/19 18:25		
1,4-Dichlorobenzene	9	ug/L	ND	10.0	05/13/19 18:25		
2,2-Dichloropropane		ug/L	ND	1.0	05/13/19 18:25		
2-Butanone (MEK)		ug/L	ND	5.0	05/13/19 18:25		
2-Chlorotoluene		ug/L	ND	1.0	05/13/19 18:25		
2-Hexanone		ug/L	ND	5.0	05/13/19 18:25		
4-Chlorotoluene		ug/L	ND	1.0	05/13/19 18:25		
4-Methyl-2-pentanon	ne (MIBK)	ug/L	ND	5.0	05/13/19 18:25		
Acetone		ug/L	ND	25.0	05/13/19 18:25		
Benzene		ug/L	ND	2.0	05/13/19 18:25		
Bromobenzene		ug/L	ND	1.0	05/13/19 18:25		
Bromochloromethan	е	ug/L	ND	1.0	05/13/19 18:25		
Bromodichlorometha	ane	ug/L	ND	10.0	05/13/19 18:25		
Bromoform		ug/L	ND	10.0	05/13/19 18:25		
Bromomethane		ug/L	ND	10.0	05/13/19 18:25		
Carbon tetrachloride		ug/L	ND	2.0	05/13/19 18:25		
Chlorobenzene		ug/L	ND	10.0	05/13/19 18:25		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

ND

ND

ND

ND

ND

ND

ND

ND

5.0 05/13/19 18:25

2.0 05/13/19 18:25

10.0 05/13/19 18:25

1.0 05/13/19 18:25

2.0 05/13/19 18:25

10.0 05/13/19 18:25

1.0 05/13/19 18:25

1.0 05/13/19 18:25

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

### **REPORT OF LABORATORY ANALYSIS**

Chloroethane

Chloromethane

Dibromomethane

cis-1,2-Dichloroethene

cis-1,3-Dichloropropene

Dibromochloromethane

Dichlorodifluoromethane

Chloroform



Qualifiers

### **QUALITY CONTROL DATA**

Project: 825 Warner Street 19-064 Pace Project No · 2619256

Pace Project No 2018230					
METHOD BLANK: 127336		Matrix:	Water		
Associated Lab Samples: 2618256	004, 2618256005, 26	618256006, 26182	56007		
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	
Diisopropyl ether	ug/L	ND	10.0	05/13/19 18:25	
Ethylbenzene	ug/L	ND	2.0	05/13/19 18:25	
Hexachloro-1,3-butadiene	ug/L	ND	10.0	05/13/19 18:25	
m&p-Xylene	ug/L	ND	1.0	05/13/19 18:25	
Methyl-tert-butyl ether	ug/L	ND	10.0	05/13/19 18:25	
Methylene Chloride	ug/L	ND	5.0	05/13/19 18:25	
Naphthalene	ug/L	ND	1.0	05/13/19 18:25	
o-Xylene	ug/L	ND	1.0	05/13/19 18:25	
p-Isopropyltoluene	ug/L	ND	1.0	05/13/19 18:25	
Styrene	ug/L	ND	1.0	05/13/19 18:25	
Tetrachloroethene	ug/L	ND	2.0	05/13/19 18:25	
Toluene	ug/L	ND	2.0	05/13/19 18:25	
trans-1,2-Dichloroethene	ug/L	ND	2.0	05/13/19 18:25	
trans-1,3-Dichloropropene	ug/L	ND	2.0	05/13/19 18:25	
Trichloroethene	ug/L	ND	2.0	05/13/19 18:25	
Trichlorofluoromethane	ug/L	ND	1.0	05/13/19 18:25	

	- J				
trans-1,3-Dichloropropene	ug/L	ND	2.0	05/13/19 18:25	
Trichloroethene	ug/L	ND	2.0	05/13/19 18:25	
Trichlorofluoromethane	ug/L	ND	1.0	05/13/19 18:25	
Vinyl acetate	ug/L	ND	2.0	05/13/19 18:25	
Vinyl chloride	ug/L	ND	10.0	05/13/19 18:25	
Xylene (Total)	ug/L	ND	2.0	05/13/19 18:25	
1,2-Dichloroethane-d4 (S)	%.	97	81-119	05/13/19 18:25	
4-Bromofluorobenzene (S)	%.	87	82-120	05/13/19 18:25	
Dibromofluoromethane (S)	%.	103	82-114	05/13/19 18:25	
Toluene-d8 (S)	%.	87	82-109	05/13/19 18:25	

#### LABORATORY CONTROL SAMPLE: 127337

	121001					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L		53.3	107	68-137	
1,1,1-Trichloroethane	ug/L	50	58.2	116	72-134	
1,1,2,2-Tetrachloroethane	ug/L	50	45.3	91	51-158	
1,1,2-Trichloroethane	ug/L	50	54.7	109	78-131	
1,1-Dichloroethane	ug/L	50	55.1	110	69-151	
1,1-Dichloroethene	ug/L	50	52.2	104	64-158	
1,1-Dichloropropene	ug/L	50	53.1	106	70-133	
1,2,3-Trichlorobenzene	ug/L	50	53.5	107	73-130	
1,2,3-Trichloropropane	ug/L	50	39.3	79	78-133	
1,2,4-Trichlorobenzene	ug/L	50	49.9	100	51-163	
1,2-Dibromo-3-chloropropane	ug/L	50	41.8	84	58-124	
1,2-Dibromoethane (EDB)	ug/L	50	54.0	108	71-134	
1,2-Dichlorobenzene	ug/L	50	51.6	103	70-135	
1,2-Dichloroethane	ug/L	50	53.7	107	72-129	
1,2-Dichloropropane	ug/L	50	50.1	100	64-135	
1,3-Dichlorobenzene	ug/L	50	51.0	102	71-134	
1,3-Dichloropropane	ug/L	50	55.8	112	70-140	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

### **REPORT OF LABORATORY ANALYSIS**



### Project: 825 Warner Street 19-064

Pace Project No.: 2618256

### LABORATORY CONTROL SAMPLE: 127337

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1.4-Dichlorobenzene	ua/L		49.1	98	70-131	
2.2-Dichloropropane	ua/L	50	55.0	110	34-170	
2-Butanone (MEK)	ua/L	100	73.1	73	52-143	
2-Chlorotoluene	ug/L	50	48.6	97	77-128	
2-Hexanone	ug/L	100	76.5	76	61-136	
4-Chlorotoluene	ua/L	50	49.5	99	79-126	
4-Methyl-2-pentanone (MIBK)	ug/l	100	81.0	81	71-129	
Acetone	ug/L	100	76.2	76	48-224	
Benzene	ug/L	50	54.5	109	68-132	
Bromobenzene	ug/L	50	45.5	.00	75-122	
Bromochloromethane	ug/L	50	64 1	128	73-133	
Bromodichloromethane	ug/L	50	48.0	96	67-121	
Bromoform	ug/L	50	49.9	100	57-125	
Bromomethane	ug/L	50	42.1	84	35-156	
Carbon tetrachloride	ug/L	50	56.9	114	66-122	
Chlorobenzene	ug/L	50	48 8	QR	71-126	
Chloroethane	ug/L	50	40.0	20 21	43-143	
Chloroform	ug/L	50		111	71_136	
Chloromethane	ug/L	50	40 5	25	47-100	
cis-1 2-Dichloroethene	ug/L	50	72.J 57 5	115	74_131	
cis-1 3-Dichloropropene	ug/L	50	۵۲.5 ۸7 7	05	78_120	
Dibromochloromethane	ug/L	50	52.6	105	65-115	
Dibromomethane	ug/L	50	50.1	118	70-120	
Dichlorodifluoromothano	ug/L	50	54.6	100	20 124	
	ug/L	50	J4.0 /0.2	08	29-124 70-130	
Ethylbonzono	ug/L	50	49.2	90 07	68 120	
Hovachloro 1.3 butadiono	ug/L	50	40.0	111	59 142	
	ug/L	100	101	101	67 137	
Mathyl tort butyl other	ug/L	100	101	101	50 120	
Methylene Chloride	ug/L	50	54.5	100	59-130 61 147	
Nanhthalana	ug/L	50	0 <del>4</del> .5 المراجع	04	18-147	
	ug/L	50	47.1 52.1	94 106	50 1/1	
n Isopropyltolyopo	ug/L	50	33. I 45 G	01	52-141	
Sturana	ug/L	50	40.0 56 /	91 110	JO-137 77 100	
Tetrachloroethene	ug/L	50	50.4	110	11-120 51_130	
Toluana	ug/L	50	50.9	103	60-133	
trans_1.2-Dichloroethono	ug/L	50	57.6	103	60 144	
trans-1.2-Dichloropropopo	ug/L	50	57.0 47.5	115	7/ 100	
Trichloroothono	ug/L	50	47.0	90	73 106	
Trichlorofluoromethana	ug/L	50	40.0	92	10-120	
Vinul acotato	ug/L	50	49.1 37 G	90 75	52 1/1	
Vinyl ablarida	ug/L	50	31.0	10	52-14	
Viligi Chionae	ug/L	50	45.3	91	JU-133	
Aylene (10tal)	ug/L	150	154	103	10-132	
1,2-DICHIOROETHANE-04 (S)	%. 0/			98	81-119	
4-Divitionuolopenzene (S)	70. 0/			90	02-120	
	%. 0/			110	82-114	
Ioluene-ao (S)	%.			86	82-109	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

### **REPORT OF LABORATORY ANALYSIS**



Project: 825 Warner Street 19-064

Pace Project No.: 2618256

MATRIX SPIKE & MATRIX SP	PIKE DUPL	ICATE: 1268	90		126891						
			MS	MSD							
		2618256004	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD Qual
1,1,1,2-Tetrachloroethane	ug/L	ND	50	50	71.3	32.2	143	64	68-137	76	11 M1,R1
1,1,1-Trichloroethane	ug/L	ND	50	50	86.1	42.3	172	85	66-142	68	11 M1,R1
1,1,2,2-Tetrachloroethane	ug/L	ND	50	50	58.3	26.7	117	53	39-171	74	13 R1
1,1,2-Trichloroethane	ug/L	ND	50	50	73.3	32.5	147	65	73-136	77	12 M1,R1
1,1-Dichloroethane	ug/L	ND	50	50	74.6	37.4	149	75	66-155	66	15 R1
1,1-Dichloroethene	ug/L	ND	50	50	80.6	40.6	161	81	33-181	66	34 R1
1,1-Dichloropropene	ug/L	ND	50	50	73.1	39.5	146	79	70-133	60	12 M1,R1
1,2,3-Trichlorobenzene	ug/L	ND	50	50	59.5	30.8	119	62	73-130	64	22 M1,R1
1,2,3-Trichloropropane	ug/L	ND	50	50	47.9	21.8	96	44	78-133	75	14 M1,R1
1,2,4-Trichlorobenzene	ug/L	ND	50	50	55.7	28.7	111	57	44-164	64	13 R1
1,2-Dibromo-3- chloropropane	ug/L	ND	50	50	51.4	22.6	103	45	58-124	78	15 M1,R1
1,2-Dibromoethane (EDB)	ug/L	ND	50	50	69.5	31.9	139	64	71-134	74	12 M1,R1
1,2-Dichlorobenzene	ug/L	ND	50	50	64.1	30.6	128	61	69-135	71	10 M1,R1
1,2-Dichloroethane	ug/L	ND	50	50	69.8	34.0	140	68	36-159	69	10 R1
1,2-Dichloropropane	ug/L	ND	50	50	67.8	30.8	136	62	68-132	75	11 M1,R1
1,3-Dichlorobenzene	ug/L	ND	50	50	63.1	30.9	126	62	68-135	68	10 M1,R1
1,3-Dichloropropane	ug/L	ND	50	50	73.0	33.2	146	66	70-138	75	10 M1,R1
1,4-Dichlorobenzene	ug/L	ND	50	50	58.0	29.1	116	58	49-153	66	9 R1
2,2-Dichloropropane	ug/L	ND	50	50	66.0	32.5	132	65	34-170	68	9 R1
2-Butanone (MEK)	ug/L	ND	100	100	96.1	48.9	96	49	10-189	65	23 R1
2-Chlorotoluene	ug/L	ND	50	50	63.7	30.7	127	61	77-128	70	10 M1,R1
2-Hexanone	ug/L	ND	100	100	94.6	43.0	95	43	40-135	75	18 R1
4-Chlorotoluene	ug/L	ND	50	50	61.7	30.6	123	61	79-126	67	10 M1,R1
4-Methyl-2-pentanone (MIBK)	ug/L	ND	100	100	107	47.5	107	48	30-177	77	10 R1
Acetone	ug/L	ND	100	100	94.0	43.9	92	42	44-223	73	14 M1,R1
Benzene	ug/L	ND	50	50	73.5	36.4	147	73	66-139	68	10 M1,R1
Bromobenzene	ug/L	ND	50	50	58.0	28.0	116	56	75-122	70	12 M1,R1
Bromochloromethane	ug/L	ND	50	50	83.1	40.7	166	81	73-133	68	13 M1,R1
Bromodichloromethane	ug/L	ND	50	50	66.9	30.9	134	62	57-120	74	13 M1,R1
Bromoform	ug/L	ND	50	50	66.2	29.7	132	59	48-128	76	13 M1,R1
Bromomethane	ug/L	ND	50	50	60.7	32.5	121	65	10-187	61	32 R1
Carbon tetrachloride	ug/L	ND	50	50	88.7	44.8	177	90	58-127	66	14 M1,R1
Chlorobenzene	ug/L	ND	50	50	63.4	31.2	127	62	63-137	68	10 M1,R1
Chloroethane	ug/L	ND	50	50	58.9	30.9	118	62	52-146	62	16 R1
Chloroform	ug/L	ND	50	50	74.4	36.7	149	73	74-137	68	9 M1,R1
Chloromethane	ug/L	ND	50	50	58.6	32.1	117	64	41-127	58	10 R1
cis-1,2-Dichloroethene	ug/L	ND	50	50	77.2	39.7	154	79	71-138	64	16 M1,R1
cis-1,3-Dichloropropene	ug/L	ND	50	50	60.9	28.0	122	56	32-145	74	12 R1
Dibromochloromethane	ug/L	ND	50	50	72.1	32.2	144	64	52-116	76	13 M1,R1
Dibromomethane	ug/L	ND	50	50	76.5	37.2	153	74	79-129	69	14 M1,R1
Dichlorodifluoromethane	ug/L	ND	50	50	98.4	52.3	197	105	36-126	61	15 M1,R1
Diisopropyl ether	ug/L	ND	50	50	65.2	30.7	130	61	70-130	72	20 M1,R1
Ethylbenzene	ug/L	ND	50	50	64.1	31.4	128	62	31-174	68	10 R1
Hexachloro-1,3-butadiene	ug/L	ND	50	50	71.2	38.6	142	77	58-142	59	11 R1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

### **REPORT OF LABORATORY ANALYSIS**



Project: 825 Warner Street 19-064

Pace Project No.: 2618256

MATRIX SPIKE & MATRIX SP	PIKE DUPL	ICATE: 1268	90		126891							
			MS	MSD								
		2618256004	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
m&p-Xylene	ug/L	ND	100	100	133	64.3	132	64	27-179	70	10	R1
Methyl-tert-butyl ether	ug/L	ND	100	100	143	65.6	143	65	38-120	74	12	M1,R1
Methylene Chloride	ug/L	ND	50	50	70.2	36.0	140	72	61-146	64	15	R1
Naphthalene	ug/L	ND	50	50	55.1	27.8	110	56	25-159	66	14	R1
o-Xylene	ug/L	ND	50	50	70.0	33.4	139	66	52-141	71	65	R1
p-Isopropyltoluene	ug/L	ND	50	50	57.3	28.7	115	57	59-134	67	9	M1,R1
Styrene	ug/L	ND	50	50	70.7	33.0	141	66	77-128	73	14	M1,R1
Tetrachloroethene	ug/L	ND	50	50	77.6	39.4	155	79	36-155	65	14	R1
Toluene	ug/L	ND	50	50	70.5	34.1	140	68	52-146	70	11	R1
trans-1,2-Dichloroethene	ug/L	ND	50	50	76.3	39.9	153	80	61-152	63	14	M1,R1
trans-1,3-Dichloropropene	ug/L	ND	50	50	60.7	27.8	121	56	37-146	74	12	R1
Trichloroethene	ug/L	ND	50	50	61.0	30.6	122	61	61-141	66	12	R1
Trichlorofluoromethane	ug/L	ND	50	50	85.0	44.1	170	88	51-141	63	13	M1,R1
Vinyl acetate	ug/L	ND	50	50	63.2	39.5	126	79	52-141	46	14	R1
Vinyl chloride	ug/L	ND	50	50	69.3	37.1	139	74	22-156	60	26	R1
Xylene (Total)	ug/L	ND	150	150	203	97.7	135	65	78-132	70	7	RS
1,2-Dichloroethane-d4 (S)	%.						95	98	81-119			
4-Bromofluorobenzene (S)	%.						90	92	82-120			
Dibromofluoromethane (S)	%.						109	108	82-114			
Toluene-d8 (S)	%.						87	85	82-109			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

### **REPORT OF LABORATORY ANALYSIS**



825 Warner Street 19-064 Project:

+ NI. 2640256

Pace Project No.: 2618256					
QC Batch: 28011		Analysis Meth	nod: EF	PA 8270D	
QC Batch Method: EPA 3546		Analysis Des	cription: 82	70D MSSV PAH	
Associated Lab Samples: 26182560	02				
METHOD BLANK: 125947		Matrix:	Solid		
Associated Lab Samples: 26182560	02				
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1-Methylnaphthalene	ug/kg	ND	327	05/09/19 12:25	
2-Methylnaphthalene	ug/kg	ND	327	05/09/19 12:25	
Acenaphthene	ug/kg	ND	327	05/09/19 12:25	
Acenaphthylene	ug/kg	ND	327	05/09/19 12:25	
Anthracene	ug/kg	ND	327	05/09/19 12:25	
Benzo(a)anthracene	ug/kg	ND	327	05/09/19 12:25	
Benzo(a)pyrene	ug/kg	ND	327	05/09/19 12:25	
Benzo(b)fluoranthene	ug/kg	ND	327	05/09/19 12:25	
Benzo(g,h,i)perylene	ug/kg	ND	327	05/09/19 12:25	
Benzo(k)fluoranthene	ug/kg	ND	327	05/09/19 12:25	
Chrysene	ug/kg	ND	327	05/09/19 12:25	
Dibenz(a,h)anthracene	ug/kg	ND	327	05/09/19 12:25	
Fluoranthene	ug/kg	ND	327	05/09/19 12:25	
Fluorene	ug/kg	ND	327	05/09/19 12:25	
Indeno(1,2,3-cd)pyrene	ug/kg	ND	327	05/09/19 12:25	
Naphthalene	ug/kg	ND	327	05/09/19 12:25	

ND

ND

67

36

79

327 05/09/19 12:25

327 05/09/19 12:25

15-126 05/09/19 12:25

11-106 05/09/19 12:25

11-156 05/09/19 12:25

### 125048

ug/kg

ug/kg

%.

%.

%.

Phenanthrene

2-Fluorobiphenyl (S)

Nitrobenzene-d5 (S)

p-Terphenyl-d14 (S)

Pyrene

LADURATURT CUNTRUL SAMIFLE.	120940					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1-Methylnaphthalene	ug/kg	2640	1770	67	42-109	
2-Methylnaphthalene	ug/kg	2640	1830	69	42-106	
Acenaphthene	ug/kg	2640	1960	74	50-117	
Acenaphthylene	ug/kg	2640	1880	71	46-124	
Anthracene	ug/kg	2640	2170	82	57-122	
Benzo(a)anthracene	ug/kg	2640	2150	82	49-116	
Benzo(a)pyrene	ug/kg	2640	2070	79	46-121	
Benzo(b)fluoranthene	ug/kg	2640	1970	75	46-127	
Benzo(g,h,i)perylene	ug/kg	2640	1990	76	49-128	
Benzo(k)fluoranthene	ug/kg	2640	2340	89	52-123	
Chrysene	ug/kg	2640	2150	81	55-116	
Dibenz(a,h)anthracene	ug/kg	2640	2010	76	48-129	
Fluoranthene	ug/kg	2640	2190	83	54-124	
Fluorene	ug/kg	2640	1880	71	51-122	
Indeno(1,2,3-cd)pyrene	ug/kg	2640	1990	76	48-131	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

### **REPORT OF LABORATORY ANALYSIS**



Project: 825 Warner Street 19-064

Pace Project No.: 2618256

LABORATORY CONTROL SAMPLE:	125948					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Naphthalene	ug/kg		1680	64	44-107	
Phenanthrene	ug/kg	2640	2070	79	55-120	
Pyrene	ug/kg	2640	1960	74	58-126	
2-Fluorobiphenyl (S)	%.			74	15-126	
Nitrobenzene-d5 (S)	%.			64	11-106	
p-Terphenyl-d14 (S)	%.			88	11-156	

MATRIX SPIKE SAMPLE:	125949						
		2618256002	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1-Methylnaphthalene	ug/kg	ND	3260	6390	179	10-130	M6
2-Methylnaphthalene	ug/kg	ND	3260	6510	179	10-126	M6
Acenaphthene	ug/kg	ND	3260	7990	231	10-148	M6
Acenaphthylene	ug/kg	ND	3260	6740	199	10-152	M6
Anthracene	ug/kg	ND	3260	15600	455	10-159	M6
Benzo(a)anthracene	ug/kg	ND	3260	23100	670	10-148	M6
Benzo(a)pyrene	ug/kg	ND	3260	22300	594	10-156	M6
Benzo(b)fluoranthene	ug/kg	ND	3260	21900	576	10-156	M6
Benzo(g,h,i)perylene	ug/kg	ND	3260	16400	423	10-153	M6
Benzo(k)fluoranthene	ug/kg	ND	3260	19000	498	10-159	M6
Chrysene	ug/kg	ND	3260	25000	730	10-151	M6
Dibenz(a,h)anthracene	ug/kg	ND	3260	6750	178	10-156	M6
Fluoranthene	ug/kg	6570	3260	61000	1670	10-157	M6
Fluorene	ug/kg	ND	3260	14500	420	10-151	M6
Indeno(1,2,3-cd)pyrene	ug/kg	ND	3260	13000	336	10-160	M6
Naphthalene	ug/kg	ND	3260	5770	153	10-128	M6
Phenanthrene	ug/kg	6050	3260	78300	2210	10-153	M6
Pyrene	ug/kg	5580	3260	49500	1340	10-153	M6
2-Fluorobiphenyl (S)	%.				80	15-126	
Nitrobenzene-d5 (S)	%.				55	11-106	
p-Terphenyl-d14 (S)	%.				108	11-156	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

### **REPORT OF LABORATORY ANALYSIS**



Project: 825 Warner Street 19-064

_: 2640256

Pace Project No.: 2618256					
QC Batch: 28310		Analysis Meth	nod: EF	PA 8270D	
QC Batch Method: EPA 3546		Analysis Desc	cription: 82	70D MSSV PAH	
Associated Lab Samples: 2618256	6001				
METHOD BLANK: 127479		Matrix:	Solid		
Associated Lab Samples: 2618256	6001				
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1-Methylnaphthalene	ug/kg	ND	330	05/13/19 22:59	
2-Methylnaphthalene	ug/kg	ND	330	05/13/19 22:59	
Acenaphthene	ug/kg	ND	330	05/13/19 22:59	
Acenaphthylene	ug/kg	ND	330	05/13/19 22:59	
Anthracene	ug/kg	ND	330	05/13/19 22:59	
Benzo(a)anthracene	ug/kg	ND	330	05/13/19 22:59	
Benzo(a)pyrene	ug/kg	ND	330	05/13/19 22:59	
Benzo(b)fluoranthene	ug/kg	ND	330	05/13/19 22:59	
Benzo(g,h,i)perylene	ug/kg	ND	330	05/13/19 22:59	
Benzo(k)fluoranthene	ug/kg	ND	330	05/13/19 22:59	
Chrysene	ug/kg	ND	330	05/13/19 22:59	
Dibenz(a,h)anthracene	ug/kg	ND	330	05/13/19 22:59	
Fluoranthene	ug/kg	ND	330	05/13/19 22:59	

ug/kg	ND	330	05/13/19 22:59
ug/kg	ND	330	05/13/19 22:59
ug/kg	ND	330	05/13/19 22:59
ug/kg	ND	330	05/13/19 22:59
ug/kg	ND	330	05/13/19 22:59
%.	80	15-126	05/13/19 22:59
%.	71	11-106	05/13/19 22:59
%.	71	11-156	05/13/19 22:59
	ug/kg ug/kg ug/kg ug/kg %. %. %.	ug/kg         ND           ug/kg         ND           ug/kg         ND           ug/kg         ND           ug/kg         ND           %.         80           %.         71           %.         71	ug/kg         ND         330           %.         80         15-126           %.         71         11-106           %.         71         11-156

ABORATORY	CONTROL	SAMPLE	127480

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1-Methylnaphthalene	ug/kg	2660	1670	63	42-109	
2-Methylnaphthalene	ug/kg	2660	1700	64	42-106	
Acenaphthene	ug/kg	2660	1960	74	50-117	
Acenaphthylene	ug/kg	2660	2090	79	46-124	
Anthracene	ug/kg	2660	2000	75	57-122	
Benzo(a)anthracene	ug/kg	2660	2010	76	49-116	
Benzo(a)pyrene	ug/kg	2660	2000	75	46-121	
Benzo(b)fluoranthene	ug/kg	2660	1740	65	46-127	
Benzo(g,h,i)perylene	ug/kg	2660	1820	68	49-128	
Benzo(k)fluoranthene	ug/kg	2660	2200	83	52-123	
Chrysene	ug/kg	2660	2100	79	55-116	
Dibenz(a,h)anthracene	ug/kg	2660	1820	68	48-129	
Fluoranthene	ug/kg	2660	2100	79	54-124	
Fluorene	ug/kg	2660	2040	77	51-122	
Indeno(1,2,3-cd)pyrene	ug/kg	2660	1820	69	48-131	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

### **REPORT OF LABORATORY ANALYSIS**



Project: 825 Warner Street 19-064

Pace Project No.: 2618256

LABORATORY CONTROL SAMPLE:	127480					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Naphthalene	ug/kg		1770	67	44-107	
Phenanthrene	ug/kg	2660	1990	75	55-120	
Pyrene	ug/kg	2660	1750	66	58-126	
2-Fluorobiphenyl (S)	%.			77	15-126	
Nitrobenzene-d5 (S)	%.			61	11-106	
p-Terphenyl-d14 (S)	%.			73	11-156	

MATRIX SPIKE SAMPLE:	127481						
		2618256001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1-Methylnaphthalene	ug/kg	ND	3030	2130	70	10-130	
2-Methylnaphthalene	ug/kg	ND	3030	2020	67	10-126	
Acenaphthene	ug/kg	ND	3030	2240	74	10-148	
Acenaphthylene	ug/kg	ND	3030	2250	74	10-152	
Anthracene	ug/kg	ND	3030	2300	75	10-159	
Benzo(a)anthracene	ug/kg	ND	3030	2260	75	10-148	
Benzo(a)pyrene	ug/kg	ND	3030	2300	74	10-156	
Benzo(b)fluoranthene	ug/kg	ND	3030	2420	78	10-156	
Benzo(g,h,i)perylene	ug/kg	ND	3030	2110	68	10-153	
Benzo(k)fluoranthene	ug/kg	ND	3030	2430	80	10-159	
Chrysene	ug/kg	ND	3030	2310	76	10-151	
Dibenz(a,h)anthracene	ug/kg	ND	3030	2020	67	10-156	
Fluoranthene	ug/kg	ND	3030	2610	81	10-157	
Fluorene	ug/kg	ND	3030	2250	74	10-151	
Indeno(1,2,3-cd)pyrene	ug/kg	ND	3030	2020	67	10-160	
Naphthalene	ug/kg	ND	3030	2190	72	10-128	
Phenanthrene	ug/kg	ND	3030	2310	72	10-153	
Pyrene	ug/kg	ND	3030	2010	62	10-153	
2-Fluorobiphenyl (S)	%.				78	15-126	
Nitrobenzene-d5 (S)	%.				69	11-106	
p-Terphenyl-d14 (S)	%.				70	11-156	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

### **REPORT OF LABORATORY ANALYSIS**



Project: 825 Warner Street 19-064

Pace Project No.: 2618256

QC Batch:	28008	Analysis Met	hod:	EPA 8270D		
QC Batch Method:	EPA 3510C	Analysis Des	cription:	8270D MSSV PAH		
Associated Lab Samp	oles: 2618256005, 2618256006					
METHOD BLANK: 1	125937	Matrix:	Water			
Associated Lab Samp	oles: 2618256005, 2618256006					
		Blank	Reporting			
Deneme	tan Ilmita	Desult	I imait	ام میں ام م	Qualifiana	

Parameter	Units	Result	Limit	Analyzed	Qualifiers
1-Methylnaphthalene	ug/L	ND	10.0	05/08/19 22:42	
2-Methylnaphthalene	ug/L	ND	10.0	05/08/19 22:42	
Acenaphthene	ug/L	ND	10.0	05/08/19 22:42	
Acenaphthylene	ug/L	ND	10.0	05/08/19 22:42	
Anthracene	ug/L	ND	10.0	05/08/19 22:42	
Benzo(a)anthracene	ug/L	ND	10.0	05/08/19 22:42	
Benzo(a)pyrene	ug/L	ND	10.0	05/08/19 22:42	
Benzo(b)fluoranthene	ug/L	ND	10.0	05/08/19 22:42	
Benzo(g,h,i)perylene	ug/L	ND	10.0	05/08/19 22:42	
Benzo(k)fluoranthene	ug/L	ND	10.0	05/08/19 22:42	
Chrysene	ug/L	ND	10.0	05/08/19 22:42	
Dibenz(a,h)anthracene	ug/L	ND	10.0	05/08/19 22:42	
Fluoranthene	ug/L	ND	10.0	05/08/19 22:42	
Fluorene	ug/L	ND	10.0	05/08/19 22:42	
Indeno(1,2,3-cd)pyrene	ug/L	ND	10.0	05/08/19 22:42	
Naphthalene	ug/L	ND	10.0	05/08/19 22:42	
Phenanthrene	ug/L	ND	10.0	05/08/19 22:42	
Pyrene	ug/L	ND	10.0	05/08/19 22:42	
2-Fluorobiphenyl (S)	%.	57	12-129	05/08/19 22:42	
Nitrobenzene-d5 (S)	%.	44	13-107	05/08/19 22:42	
p-Terphenyl-d14 (S)	%.	79	14-147	05/08/19 22:42	

### LABORATORY CONTROL SAMPLE: 125938

		Snike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1-Methylnaphthalene	ug/L	80	45.0	56	30-135	
2-Methylnaphthalene	ug/L	80	44.6	56	36-114	
Acenaphthene	ug/L	80	53.8	67	37-138	
Acenaphthylene	ug/L	80	54.7	68	43-136	
Anthracene	ug/L	80	60.6	76	48-151	
Benzo(a)anthracene	ug/L	80	58.8	74	49-154	
Benzo(a)pyrene	ug/L	80	55.4	69	45-164	
Benzo(b)fluoranthene	ug/L	80	58.9	74	46-157	
Benzo(g,h,i)perylene	ug/L	80	61.6	77	50-161	
Benzo(k)fluoranthene	ug/L	80	51.9	65	48-158	
Chrysene	ug/L	80	57.8	72	49-155	
Dibenz(a,h)anthracene	ug/L	80	61.5	77	44-165	
Fluoranthene	ug/L	80	65.3	82	53-156	
Fluorene	ug/L	80	57.9	72	45-142	
Indeno(1,2,3-cd)pyrene	ug/L	80	61.8	77	43-171	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

### **REPORT OF LABORATORY ANALYSIS**



Project: 825 Warner Street 19-064 Pace Project No.: 2618256

### LABORATORY CONTROL SAMPLE: 125938

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Naphthalene	ug/L	80	40.9	51	35-106	
Phenanthrene	ug/L	80	59.5	74	49-146	
Pyrene	ug/L	80	56.4	70	50-146	
2-Fluorobiphenyl (S)	%.			63	12-129	
Nitrobenzene-d5 (S)	%.			48	13-107	
p-Terphenyl-d14 (S)	%.			76	14-147	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

### **REPORT OF LABORATORY ANALYSIS**



Project:	825 Warner Street	19-064								
Pace Project No.:	2618256									
QC Batch:	28191		Analysis Meth	od:	Pace SOP #	[‡] 204				
QC Batch Method:	Pace SOP #204		Analysis Desc	ription:	Dry Weight/	Percent N	Moisture			
Associated Lab Sar	mples: 261825600	01, 2618256002, 2	2618256003, 26182	256008						
SAMPLE DUPLICA	TE: 127037									
			2618179001	Dup			Max			
Parar	neter	Units	Result	Result	RPI	)	RPD		Qualifiers	
Percent Moisture		%	19.0	18	3.4	3		10		
SAMPLE DUPLICA	TE: 127038									
			2618256001	Dup			Max			
Parar	neter	Units	Result	Result	RPI	)	RPD		Qualifiers	
Percent Moisture		%	12.5	12	2.8	3		10		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

### **REPORT OF LABORATORY ANALYSIS**



### QUALIFIERS

Project: 825 Warner Street 19-064

Pace Project No.: 2618256

#### DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

**RPD** - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

### ANALYTE QUALIFIERS

- IU The internal standard recoveries associated with this sample exceed the upper control limit. The reported results should be considered estimated values.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- M6 Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.
- MS Analyte recovery in the matrix spike was outside QC limits for one or more of the constituent analytes used in the calculated result.
- R1 RPD value was outside control limits.
- RS The RPD value in one of the constituent analytes was outside the control limits.
- v2 The continuing calibration verification was below the method acceptance limit. The analyte was not detected in the associated samples and the sensitivity of the instrument was verified with a reporting limit check standard.
- v3 The continuing calibration verification was below the method acceptance limit. Any detection for the analyte in the associated samples may have a low bias.



### QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:825 Warner Street 19-064Pace Project No.:2618256

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
2618256002	B2-7-10'	EPA 3050B	28003	EPA 6010D	28027
2618256003	B3-2-3'	EPA 3050B	28003	EPA 6010D	28027
2618256008	B1-3-4'	EPA 3050B	28077	EPA 6010D	28111
2618256002	B2-7-10'	EPA 7471B	27845	EPA 7471B	28050
2618256003	B3-2-3'	EPA 7471B	27845	EPA 7471B	28050
2618256008	B1-3-4'	EPA 7471B	28248	EPA 7471B	28316
2618256001	B1-5-10'	EPA 3546	28310	EPA 8270D	28312
2618256002	B2-7-10'	EPA 3546	28011	EPA 8270D	28046
2618256005	B2	EPA 3510C	28008	EPA 8270D	28058
2618256006	B3	EPA 3510C	28008	EPA 8270D	28058
2618256001	B1-5-10'	EPA 5035	27955	EPA 8260B	27974
2618256002	B2-7-10'	EPA 5035	27955	EPA 8260B	27974
2618256004	B1	EPA 8260B	28174		
2618256005	B2	EPA 8260B	28174		
2618256006	B3	EPA 8260B	28174		
2618256007	Trip Blank	EPA 8260B	28174		
2618256001	B1-5-10'	Pace SOP #204	28191		
2618256002	B2-7-10'	Pace SOP #204	28191		
2618256003	B3-2-3'	Pace SOP #204	28191		
2618256008	B1-3-4'	Pace SOP #204	28191		

### **REPORT OF LABORATORY ANALYSIS**

	<ul> <li>A socium hydroxide. (5) zinc acetate,</li> <li>(A) ascorbic acid. (B) ammonium sulfate,</li> </ul>	ab Profile/Line: Lab Sample Receipt Checklist: Lab Sample Receipt Checklist: Custody Seals Present Y N NA Custody Signatures Present Y N NA Collector Signature Present Y N NA Solficient Volume Y N NA Sufficient Volume Y N NA Samples Received on Ice Y N NA VOA Headspace Acceptable Y N NA VOA Headspace Acceptable Y N NA Samples In Holding Time Y N NA Samples In Holding Time Y N NA Samples In Holding Time Y N NA Classingles In Holding Time Y N NA Classingle PH Acceptable Y N NA Classingle PH Acceptable PH Strips: LAB USE ONLY: Lab Sample # / Comments:	No.     No.       No.     No.       No.     No.       No.     No.       Lab Sample Temperature Info:     No.       Temp Blank Received:     No.       Therm 10#:     Cooler 1 Temp Upon Receipt:       Cooler 1 Them Corr. Factor:     OC       Lure     Cooler 1 Them Corr. Factor:       Lip Blank Received:     No.       Lip Blank Received:     No.       Lip Blank Received:     No.       Lip Blank Received:     Yor       Lip Blank Received:     Yor
2618256	Preservative Types: (1) nitric acid, (2) sulfuric acid, (3) hydrochloric     Preservative Types: (1) nitric acid, (2) sulfuric acid, (3) hydrochloric     Si methanol, (7) acidium bisulfate, (8) sodium thiosulfate, (9) hexane,     10 ammonium hydroxide, (0) T5P, (U) Unpreserved, (0) Other	Vulver XXXXX Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sthr Sth	SHORT HOLDS PRESENT (= 72 hours): V W N/A SHORT HOLDS PRESENT (= 72 hours): V W N/A Lab Tracking #: 2378867 Samples received via: FEDEX UPS (Client) Courtier Pace Cou MTJL LAB USE ON Date/Time: Date/Time: Table #: Date/Time: Prelogin:
dy is a LEGAL DOCUMENT - Complete all relevent fields Billing Information:	Email De tr i O MIND RIVIS ar 16	A State:     Country/City, I Time Edite Collected:       I PT [ JMT ] JT [ JMT ] CT M] ET       DA     I JT [ JMT ] JT [ JMT ] T       I PT [ JMT ] MT ] T     I T       I PT [ Mole     Compliance Monitoring?       I J Yes     I No       DW PWS ID #:     DW PWS ID #:       DW Location Code:     I No       I Next Day     I Yes       I Next Day     I Yes       I Next Day     I Yes       I No     No       I J Mext Day     I Yes       I No     No       I J Mext Day     I Yes       I No     No       I J Mext Day     I Yes       I No     No       I J Mext Day     I Yes       I No     No       I J Day     I Yes       I No     No       I No     No       I Staue (TS), Bioassay (B), Vapor (VI), Other (OT)       Ifsue (TS), Bioassay (B), Vapor (VI), Other (OT)       Issue (TS), Bioassay (B), Vapor (VI), Other (OT)       Date     Time       Date     Date   <	P.V-TY     I.V.Y.     I.V.Y.     None       Type of ice Used:     Weit     Blue     Dry     None       Packing Material Used:     Methods     Signature)       Packing Material Used:     Methods     Methods
Company: Chain-of-Custod Company: ETPL	REPORT TO TOWN HUMONDY MSt REPORT TO TOWN HAP RE	Customer Profect Name/Number Area 19-06 Phone: 706 86 81 Site/Facility ID #: Email: Ar-100 Month Site/Facility ID #: Email: Ar-100 Month Site/Facility ID #: Email: Ar-100 Month Site/Facility ID #: Collected By (sighatyre): Durnaround Date Requir Town Archive: Durnaround Date Requir Sapple Disposal I Rush: Collected By (sighatyre): Sapple Disposal I Rush: Collected By (Sighatyre): Matrix Codes (Insert in Matrix box below): Drinking Water Product (P), Soil/Solid (SL), Oil (OL), Wipe (WP), Air (AR), Ti: Customer Sample ID Matrix • Comp/ BI-5-10 SI SI (OL), Wipe (WP), Air (AR), Ti: Customer Sample ID Matrix • Comp/ BI-5-10 SI SI (CU), Wipe (WP), Air (AR), Ti: Customer Sample ID SI (SL), Oil (OL), Wipe (WP), Air (AR), Ti: Customer Sample ID SI (SL), Oil (OL), Wipe (WP), Air (AR), Ti: Customer Sample ID SI (SL), Oil (OL), Wipe (WP), Air (AR), Ti: Customer Sample ID SI (SL), Oil (OL), Wipe (WP), Air (AR), Ti: Customer Sample ID SI (SL), Oil (OL), Wipe (WP), Air (AR), Ti: Customer Sample ID SI (SL), Oil (OL), Wipe (WP), Air (AR), Ti: Customer Sample ID SI (SL), Oil (OL), Wipe (WP), Air (AR), Ti: Customer Sample ID SI (SL), Oil (OL), Wipe (WP), Air (AR), Ti: Customer Sample ID SI (SL), Oil (OL), Wipe (WP), Air (AR), Ti: Customer Sample ID SI (SL), Oil (OL), Wipe (WP), Air (AR), Ti: Customer Sample ID SI (SL), Oil (OL), Wipe (WP), Air (AR), Ti: Customer Sample ID SI (SL), OII (OL), Wipe (WP), Air (AR), Ti: Customer Sample ID SI (SL), OII (OL), Wipe (WP), Air (AR), Ti: Customer Sample ID SI (SL), OII (OL), Wipe (WP), Air (AR), Ti: Customer Sample ID SI (SL), OII (OL), Wipe (WP), Air (AR), Ti: Customer Sample ID SI (SL), OII (OL), Wipe (WP), Air (AR), Ti: Customer Sample ID SI (SL), OII (OL), WIPE (SL), OII (SL), (SL	Customer Remarks / Special Conditions / Possible Hazards: Relingues fred by/Company (Signature) Date

Sa	mple Condition	Upon Rec	WO# : ;	2618256
Pace Analytical Client Name	ETR	E	PM: SMM CLIENT: ET	Due Date: 05/14/19 RI
Courier:  Fed Ex UPS USPS Clie Tracking #:	ent Commercial	Pace Other		Optional Proj. Due Date: Proj. Namo:
Custody Seal on Cooler/Box Present:	no Seals	intact: 🗌 yes	🗌 no	Floj. Name.
Packing Material: Bubble Wrap	e Bags 🗌 None	Other		- A
Thermometer Used 082	Type of Ice: (Wet	) Blue None	Samples	on ice, cooling process has begun
Cooler Temperature $2.0^{\circ}$ Temp should be above freezing to $6^{\circ}$ C	Biological Tissue	is Frozen: Yes P Comments:	No Date cor	and Initials of person examining tents:////////////////////////////////
Chain of Custody Present:	Pres DNo DN/A	1.		
Chain of Custody Filled Out:	Yes No N/A	2.		
Chain of Custody Relinquished:	Hes No N/A	3.		
Sampler Name & Signature on COC:	Pres No N/A	4.		
Samples Arrived within Hold Time:	ØYes □No □N/A	5.		
Short Hold Time Analysis (<72hr):		6.		
Rush Turn Around Time Requested:	□Yes □No □N/A	7.		
Sufficient Volume:		8.		
Correct Containers Used:		9.		
-Pace Containers Used:				- 24 
Containers Intact:	Ves No N/A	10.		
Filtered volume received for Dissolved tests	□Yes □No ZN/A	11.		
Sample Labels match COC:		12.		
-Includes date/time/ID/Analysis Matrix: All containers needing preservation have been checked.	SD/W	12		
All containers needing preservation are found to be in compliance with EPA recommendation.		15.		
exceptions VOA coliform, TOC, O&G, WI-DRO (water)	Yes DNo	Initial when completed	Lot # of a preserval	added live
Samples checked for dechlorination:	Yes No DNA	14.		
Headspace in VOA Vials ( >6mm):	Ves ANO N/A	15.		
Trip Blank Present:	EYes No N/A	16. 1 rip Bi	ankn	of histed on the
Trip Blank Custody Seals Present	Pres No N/A	coc.		
Pace Trip Blank Lot # (if purchased):	_			
Client Notification/ Resolution: Person Contacted: Comments/ Resolution: $\delta N + \delta \delta'$ Not 1:5 tel on COC:	Container	læbelel	Field Dat	a Required? Y I N -4'is present but
Project Manager Review:			D	ate:

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office ( i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

## **ANALYTICAL ENVIRONMENTAL SERVICES, INC.**



May 24, 2019

Tom Harper ETRI 4780 Ashford Dunwoody, Suite A-456

Atlanta GA 30338

RE: 825 Warner Street

Dear Tom Harper:

Analytical Environmental Services, Inc. received for the analyses presented in following report.

Order No: 1905I13 5/17/2019 12:50:00 PM

No problems were encountered during the analyses. Additionally, all results for the associated Quality Control samples were within EPA and/or AES established limits. Any discrepancies associated with the analyses contained herein will be noted and submitted in the form of a project Case Narrative. AES's accreditations are as follows:

1

samples on

-NELAP/State of Florida Laboratory ID E87582 for analysis of Non-Potable Water, Solid & Chemical Materials, Air & Emissions Volatile Organics, and Drinking Water Microbiology & Metals, effective 07/01/18-06/30/19.

State of Georgia, Department of Natural Resources ID #800 for analysis of Drinking Water Metals, effective 07/01/18-06/30/19 and Total Coliforms/ E. coli, effective 04/25/17-04/24/20.

-AIHA-LAP, LLC Laboratory ID: 100671 for Industrial Hygiene samples (Metals and PCM Asbestos), Environmental Lead (Paint, Soil, Dust Wipes, Air), and Environmental Microbiology (Fungal) Direct Examination, effective until 11/01/19.

These results relate only to the items tested as received. This report may only be reproduced in full.

If you have any questions regarding these test results, please feel free to call.

Sincerely,

Kararic

Mirzeta Kararic Project Manager

ANALYTICAL ENVIRONMENTAL SER	NALYTICAL ENVIRONMENTAL SERVICES, INC.					CHAIN OF CUSTODY		
AES Phone: (770) 457-8177 / Toll-Free: (800) 9	972-4889 / Fax: (770) 4	57-8188	x	-		Da	ite: <u>5-16-9</u> Page of	
IMPANY: ETR£	ADDRESS: 14780 ASA Most H	Stort 2		- A	ANALYSIS REQUES		Visit our website www.aesatlanta.com for downloadable COCs and to	
IONE: -220-888-8181 MPLED BY: Jonne Haller al	SIGNATURE:	mmds	pring.an				account.	
# SAMPLE ID	SAMPLED:		POSITE		PRESERVATION (see c	odes)	Number	
	DATE TIN	VIE (5	W COW				REMARKS	
B2-7-10'	5/7/19 09	<u>30 X</u>	50					
2								
1								
NOUISHED BY DATE/TIME:		c str	DATE/TIME:	PROJECT NAME:	PROJECT INFORMAT	10N 24	RECEIPT Total # of Containers	
	2. 3.		<u> </u>	PROJECT #: SITE ADDRESS: SEND REPORT TO	WarnerStr	eet AHa	Turnaround Time (TAT) Request	
CIAL INSTRUCTIONS/COMMENTS:	OUT: / / IN: / FedEx	HIPMENT METHO VIA: VIA: UPS US ma	D il courier	INVOICE TO (IF I	DIFFERENT FROM ABOVE):		STATE PROGRAM (if any):	

Analytical En	vironme	ntal Services, Inc						Date:	24-May-19	
Client:	ETRI					Client Sa	mple ID:	B2-7-10'		
Project Name:	825 Warn	er Street				Collectio	n Date:	5/7/2019	9:30:00 AM	
Lab ID:	1905113-	001				Matrix:		Soil		
Analyses			Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
SPLP (1312) M	ETALS	SW1312/6010D				(S)	W3010A)			
Lead			0.168	0.0100		mg/L	279560	) 1	05/23/2019 14:44	AJ

#### Qualifiers:

### * Value exceeds maximum contaminant level

BRL Below reporting limit

- H Holding times for preparation or analysis exceeded
- N Analyte not NELAC certified
- B Analyte detected in the associated method blank
- > Greater than Result value

- E Estimated (value above quantitation range)
- S Spike Recovery outside limits due to matrix
- Narr See case narrative
- NC Not confirmed
- < Less than Result value
- J Estimated value detected below Reporting Limit



1. Client Name: ETRI				AES Work Order Number:	1905 13	
2. Carrier: FedEx UPS USPS Client Courier Othe			_			
	Yes	No	N/A	Details	Comments	
3. Shipping container/cooler received in good condition?	$\mathbf{\bullet}$	$\mathbf{O}$	0	damaged 🗌 leaking 🗌 other		
4. Custody seals present on shipping container?	Ŏ	Ŏ	Ŏ			
5. Custody seals intact on shipping container?	Ŏ	Ŏ	Õ			
6. Temperature blanks present?	Ŏ	Õ	Ŏ			
Cooler temperature(s) within limits of 0-6°C? [See item 13 and 14 for 7. temperature recordings.]	Ο	0	0	Cooling initiated for recently collected samples / ice		
8. Chain of Custody (COC) present?	$\odot$	$\circ$	0			
9. Chain of Custody signed, dated, and timed when relinquished and received?	Õ	Ŏ	Ŏ			
10. Sampler name and/or signature on COC?	Õ	Ŏ	1 Ø			
11. Were all samples received within holding time?	Ŏ	Ŏ	Ŏ			
12. TAT marked on the COC?	Õ	Ŏ	Ŏ	If no TAT indicated, proceeded with standard TAT per Ter	ms & Conditions.	
13. Cooler 1 Temperature 0.8       °C       Cooler 2 Temperature         14. Cooler 5 Temperature       °C       Cooler 6 Temperature         15. Comments:       °C       Source 1 Temperature			°C °C	Cooler 3 Temperature°CCoolerCooler 7 Temperature°CCooler	4 Temperature°C 8 Temperature°C	
				L cortify that I have con	monoportions 1-15 (dated initials) MJ	5/17/19
	Vac	No	NI/A	Details		
16 Ware sample containers intact upon receipt?				Details	Comments	
10. Were sample containers infact upon receipt:	X		HX-			
17. Custody seals present on sample containers:	X		1X			
				incomplete infe		
19. Do sample container labels match the COC?	$oldsymbol{O}$	0	0	no label _ other _		
20. Are analyses requested indicated on the COC?	$\odot$	$\mathbf{O}$	O			
21. Were all of the samples listed on the COC received?	$oldsymbol{O}$	0	0	samples received but not listed on COC		
22. Was the sample collection date/time noted?	$\odot$	0	O			
23. Did we receive sufficient sample volume for indicated analyses?	$\odot$		$\mathbf{O}$			
24. Were samples received in appropriate containers?	$oldsymbol{\circ}$	0				
25. Were VOA samples received without headspace (< 1/4" bubble)?	Ο	0	$\mathbf{O}$			
26. Were trip blanks submitted?	Ο	0	$\mathbf{O}$	listed on COC 🗌 not listed on COC 🗌		
27. Comments:						
This section only applies to samples where pH can be				I certify that I have con	npleted sections 16-27 (dated initials).	5/17/19
checked at Sample Receipt.	Yes	No	N/A	Details	Comments	
28. Have containers needing chemical preservation been checked? *	Ο	Ο	$\mathbf{O}$			
29. Containers meet preservation guidelines?	Õ	Ō	Ŏ			
30. Was pH adjusted at Sample Receipt?	Ŏ	Ŏ	Ŏ			
* Note: Certain analyses require chemical preservation but must be check	ed in th	e labora	atory ar	id not upon Sample Receipt such as Coliforms, VOCs ar I certify that I have con	nd Oil & Grease/TPH. npleted sections 28-30 (dated initials).	5/17/19

Clear

Client:ETRIProject Name:825 Warner StreetWorkorder:1905113

### ANALYTICAL QC SUMMARY REPORT

### BatchID: 279560

Sample ID: MB-279560	Client ID:				Uni	its: mg/L	Pre	p Date: (	)5/23/2019	Run No: 398862
SampleType: MBLK	TestCode:	SPLP (1312) METALS	SW1312/6010D		Bat	chID: 279560	Ana	alysis Date: (	)5/23/2019	Seq No: 8940202
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref V	/al %RPD	RPD Limit Qual
Lead	BRL	0.0100								
Sample ID: LCS-279560	Client ID:				Uni	ts: mg/L	Pre	p Date: (	5/23/2019	Run No: 398862
SampleType: LCS	TestCode:	SPLP (1312) METALS	SW1312/6010D		Bat	chID: 279560	An	alysis Date: (	)5/23/2019	Seq No: 8940207
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref V	/al %RPD	RPD Limit Qual
Lead	1.033	0.0100	1.000		103	80	120			
Sample ID: 1905I13-001AMS	Client ID:	B2-7-10'			Uni	its: mg/L	Pre	p Date: (	5/23/2019	Run No: 398862
SampleType: MS	TestCode:	SPLP (1312) METALS	SW1312/6010D		Bat	chID: 279560	An	alysis Date: (	)5/23/2019	Seq No: 8940210
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref V	/al %RPD	RPD Limit Qual
Lead	1.162	0.0100	1.000	0.1682	99.4	75	125			
Sample ID: 1905I13-001AMSD	Client ID:	B2-7-10'			Uni	ts: mg/L	Pre	p Date: (	5/23/2019	Run No: 398862
SampleType: MSD	TestCode:	SPLP (1312) METALS	SW1312/6010D		Bat	chID: 279560	An	alysis Date: (	)5/23/2019	Seq No: 8940212
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref V	/al %RPD	RPD Limit Qual
Lead	1.238	0.0100	1.000	0.1682	107	75	125	1.162	6.34	20

Qualifiers: > Greater than Result value

BRL Below reporting limit

J Estimated value detected below Reporting Limit

Rpt Lim Reporting Limit

< Less than Result value

E Estimated (value above quantitation range)

N Analyte not NELAC certified

S Spike Recovery outside limits due to matrix

- B Analyte detected in the associated method blank
- H Holding times for preparation or analysis exceeded
- R RPD outside limits due to matrix

# **ETRI**

### **Environmental Technology Resources, Inc.**

June 18, 2019

Ms. Shannon Ridley Georgia Environmental Protection Division Brownfield Group 2 Martin Luther King Jr. Drive Suite 1054 East Tower Atlanta, Georgia 30334

Re: PPCAP 825 Warner Street, SW Atlanta, Fulton County, Georgia

Dear Ms. Ridley:

Enclosed, please find one paper copy and two CD copies of the Prospective Purchaser Corrective Action Plan for the property located at 825 Warner Street, SW in Atlanta, Fulton County, Georgia. Included is a Brownfield Eligibility Form along with a check for \$3,000.00.

Please feel free to contact me at (770) 888-8181 with any questions concerning the PPCSR.

Sincerely, ENVIRONMENTAL TECHNOLOGY RESOURCES, INC.

Thomas Refuse

Thomas R. Harper Technical Director

Attachment

Cc. Ms. Connie Veates, Trees Atlanta

19-064.201

## PROSPECTIVE PURCHASER CORRECTIVE ACTION PLAN 825 Warner Street, SW Atlanta, Fulton County, Georgia

Submitted To:

### **Georgia Department of Natural Resources**

Environmental Protection Division Brownfield Program 2 Martin Luther King Jr. Drive Floyd Towers East, Suite 1054 Atlanta, Georgia 30334

Prepared By:

### **Environmental Technology Resources, Inc.**

4780 Ashford Dunwoody Road, Suite A-456 Atlanta, Georgia 30338 Telephone # (770) 888-8181

June 17, 2019

### PROSPECTIVE PURCHASER CORRECTIVE ACTION PLAN 825 Warner Street, SW Atlanta, Fulton County, Georgia

### **TABLE OF CONTENTS**

Page
------

		_
1.0 INTROD	UCTION	2
1.1	General	2
1.2	Prospective Purchaser Information	3
1.3	Site History	3
1.4	Previous Environmental Investigations	4
2.0 INVESTIC	GATIONS COMPLETED FOR THE PROSPECTIVE PURCHASER	6
3.0 QUALIFIC	CATION OF SITE AND PROSPECTIVE PURCHASER	10
4.0 CORRECT	TIVE ACTION PLAN	11
4.1	Summary of Soil Conditions	11
4.2	Corrective Action Completed of In Progress	11
4.3	Corrective Action Approach and Selected Technologies	11
	4.3.1 Effectiveness	13
	4.3.2 Other Regulatory or Permitting Requirements	13
4.4	Schedule	13
5.0 PREPARA	TION OF CSR	14
6.0 CERTIFIC	ATION STATEMENT	15

### List of Figures

**Section** 

Figure 1 – Site Location Map
Figure 2 – Tax Map
Figure 3 – Site Plan
Figure 4 – Soil Boring Location Map
Figure 5 – Proposed Soil Boring Location Map

### **List of Appendices**

Appendix A – Legal Description Appendix B – Phase II Environmental Site Assessment Report - 2019 Appendix C – Georgia EPD – Prospective Purchaser and Property Qualifying Criteria Form

### PROSPECTIVE PURCHASER CORRECTIVE ACTION PLAN 825 Warner Street, SW Atlanta, Fulton County, Georgia

### **1.0 INTRODUCTION**

### 1.1 GENERAL

This Prospective Purchaser Corrective Action Plan (PPCAP) has been prepared for the Trees Atlanta for the property located at 825 Warner Street, SW in Atlanta, Fulton County, Georgia ("subject property" or "Site"). The subject property is located in Land Lot 106 of the 14th Land District of Fulton County, Georgia. The property is bound by Warner Street, SW to the south, Biglin Street, SW to the west and Allene Avenue to the east. A Site Location Map depicting the location of the subject property and its surrounding topography is included as **Figure 1**.

The approximate latitude and longitude coordinates of the property are 33° 43' 29.34" north and -84° 24' 52.23" west, respectively. The site is located within the Southwest Atlanta, Georgia Topographic Quadrangle, (United States Geologic Survey, 7.5-minute series topographic quadrangle map dated 1993).

The subject property consists of an irregular shaped parcel totaling approximately 2.9-acres. The property is identified by Fulton County Tax Assessor's as Parcel No. 14 010600090070.

According to the legal description, the subject property has approximately 533 feet of frontage along Warner Street, SW. The western side of the property has approximately 258.6 feet of frontage along Biglin Street, SW and the north-northeastern side of the property is approximately 552.4 feet. The eastern side of the property has approximately 177.3 feet of frontage along Allene Avenue. The approximate boundaries of the property are shown in the Tax Map, **Figure 2**. A copy of the legal description of the property is included in **Appendix A**.

The subject property is developed with a one-story, approximate 23,000 square feet warehouse building. The building was constructed in 1952. The building is a steel-framed structure constructed on a concrete slab. The walls of the building are constructed of concrete block and galvanized metal panels. The building has a slightly pitched roof. A covered truck height loading dock area is located along the southern side of the building. A rail height dock is located adjacent to the northeast side of the building and extends to the east and southeast adjacent to an abandoned rail spur. An abandoned grain silo is located adjacent to the eastern side of the building. A Site Plan is included as **Figure 3** which shows features of the subject and surrounding properties.

The building is currently leased to various artists which use the building as individual art studios.

The current owner of the property is:

Jabobar Properties, LLC 918 Ponce de Leon Avenue, NE Atlanta, Georgia 30306

### 1.2 PROSPECTIVE PURCHASER INFORMATION

The Prospective Purchaser of the subject property is:

Trees Atlanta 225 Chester Avenue Atlanta, Georgia 30316

The contact person for Trees Atlanta is: Ms. Connie Veates Co-Executive Director and COO (404) 681-4905

Trees Atlanta plans to use the property for non-residential use.

### 1.3 SITE HISTORY

The history of the subject property was determined by reviewing aerial photographs, topographic maps, tax assessor records, Sanborn maps and City directories. Sanborn maps show the subject property being developed with four small structures in 1932. Four smaller structures were on the western side of the property. One of the smaller structures was identified as an office and another smaller building was used for storage. A larger structure on the eastern side of the property was identified as being used for steel working and the occupant was identified as The F.E. Golian Company. A railroad spur was identified near

the northern boundary of the property. By 1950, the subject property was developed with two structures. A smaller building was located on the southwest corner of the property and a larger building on the north central portion of the Site. The larger building was used as "Cold Storage" and "Wholesale Produce". A 1962 Sanborn map indicates that the property was developed with a large building on the eastern property boundary. The building was labeled as "The F.P. Golian Company Structural & Ornamental Steel". A 1978 Sanborn map labeled the use of the building as "Wholesale Meat".

Tax assessor records indicate that the existing warehouse building was constructed in 1952. A review of City directories dating back to 1952 indicate that the property was occupied by C.L. Fain Company which operated a wholesale produce company in the 1950's. In the early 1960's to sometime in the 1970's, Armour & Company operated a wholesale meat company on the property. Moms Bakery operated a commercial bakery on the property from 1994 until 2010-2014. The Artist's studio has been in operation for the past ten years.

Surrounding properties were developed residential or undeveloped land in 1927. The adjacent property to the north has been used for records storage and archiving. Properties to the east have historically been developed residential. The old State Farmer's Market on the adjacent property to the west from 1940-1957. Adjacent southern properties have been developed with commercial buildings used to stage roll-off containers and Conex boxes.

### 1.4 PREVIOUS ENVIRONMENTAL INVESTIGATIONS

A Phase II Environmental Site Assessment and limited asbestos survey were conducted on behalf of Jabobar Properties, LLC in June 2006. The Phase II ESA and asbestos survey were completed by Environmental Planning Specialists, Inc. Seven soil boring were installed to depths ranging from 28 to 30 feet below land surface. Groundwater samples were collected and analyzed for the presence of volatile organic compounds (VOC's). No VOC's were detected above laboratory detection limits in any of the groundwater samples.

The asbestos survey included the collection and analyses of 26 bulk samples which included wallboard, joint compound, ceiling tile, sealants and roof coverings. Asbestos was identified in black asphalt shingles around the perimeter of an upper crawl space, black/white flashing around a roof vent and black/white

patching cement on asphalt.

### 2.0 INVESTIGATIONS COMPLETED FOR THE PROSPECTIVE PURCHASER

In April 2019, a Phase I Environmental Site Assessment (ESA) was completed on the subject property by Oneida Total Integrated Enterprises. The Phase I ESA was completed for the U.S. Environmental Protection Agency – Region 4 and Trees Atlanta as part of a Targeted Brownfields Assessment. Oneida Total Integrated Enterprises prepared a report entitled: *Phase I Environmental Site Assessment Report 825 Warner Street, SW Atlanta, Fulton County, Georgia EPA TDD No. 0006/OT-06-017* dated April 2019.

The Phase I ESA identified the following recognized environmental conditions on the subject property.

- The regulatory database report identifies the property at 717 Warner Street on the US Brownfields database. This property was identified on the southeast corner of the subject property. The property description is "former drum storage facility". The Phase I report noted that a Phase II investigation conducted in 2006 did not identify any volatile organic compounds in groundwater.
- The subject property was identified on the SPILLS database due to an incident that occurred on August 27, 2010. The report indicates that an unknown amount of oil was discharged into a storm drain from any unknown source.

The following off-site RECs were identified in the Phase I ESA Report.

- A 1978 Sanborn map indicates that the adjacent property had transformers which may have contained PCBs
- A US Brownfields site located at 1121 Allene Avenue is located adjacent to the southeast side of the subject property. The adjacent property was identified as formerly having a drum storage facility.
- Champion International, which is located 500 feet south of the subject property, was identified as a LUST site
- ESB, Inc., which is located 0.294 miles from the subject property was identified as a State Hazardous Waste Site due to a release of Lead.
- Bernstein Scrap Metal is located approximately 500 feet to the northwest. This property was identified as having a release of Lead and is listed as a non-hazardous waste site.
- Four historical auto sites are located within 586 feet of the subject property.

Based on the findings from the Phase I, Oneida Total Integrated Enterprises recommended that a Phase II ESA be completed.

On May 7, 2019, ETRI and its subcontractor, GeoLab Drilling mobilized to the site to install the soil borings. Three soil borings were installed on the property. Soil boring B1 was located on the southwest side of the property. Soil boring B2 was installed east of the southeast corner of the building and soil

boring B3 was installed on the northeast side of the property and adjacent to an outside rail loading dock area. The locations of the soil borings are shown in **Figure 4**.

The soil borings were installed using Geoprobe® direct push technology (DPT) drill rig. The soil borings were advanced to a depths of 35 feet. The soil samples were screened for total volatile organic compounds using a field calibrated MiniRae 3000 - Photoionization Detector (PID). Soil samples were selected for analyses based on discoloration, odors and PID readings.

The soil samples collected from boring B1 at a depth of 3-4 feet, B2 at 7-10 feet and B3 at 2-3 feet were analyzed for RCRA Metals. The soil samples collected from B1 at 5-10 feet, B2 at 7-10 feet and B3 at 2-3 feet were analyzed for volatile organic compounds (VOC's) and polyaromatic hydrocarbons (PAHs). Samples VOC's were analyzed using EPA Method SW8260B, PAHs using EPA Method SW 8270D and RCRA Metals were analyzed using Method SW 6010D and 7471B. The results of the analyses of the soil samples are summarized in **Table 1** and are shown in **Figure 4**. The analytical report is included in **Attachment B**.

Parameter	B1-3-4'	B1-5-10'	B2-7-10'	<b>B3-2-3</b> '	GA EPD NC's
Metals		NA			
Arsenic	ND		27.9	15.4	41
Barium	63.9		276	218	500
Cadmium	3.7		28.9	7.3	39
Chromium	47.5		31.9	42.6	1,200
Lead	39.2		5,880	109	400
Mercury	ND		ND	ND	17
Selenium	ND		ND	ND	36
Silver	ND		ND	ND	10
Volatile Organic Compounds	NA	ND		NA	Chemical Specific
Naphthalene		ND	0.0086		100
PAHs	NA	ND			Chemical Specific
Anthracene		ND	ND		500
Benzo(a)anthracene		ND	ND		5.0
Benzo(a)pyrene		ND	ND		1.64

Table 1							
Summary of Soil Sample Analyses – May 7, 2019							
825 Warner Street, Atlanta, Georgia							

⁸²⁵ Warner Street, SW, Atlanta, Georgia Prospective Purchaser Corrective Action Plan

Parameter	B1-3-4'	B1-5-10'	B2-7-10'	<b>B3-2-3</b> '	GA EPD
					NC's
Benzo(b)fluoranthene		ND	ND		5.0
Benzo(k)fluoranthene		ND	ND		5.0
Benzo(g,h,i) perylene		ND	ND		500
Chrysene		ND	ND		5.0
Dibenzo(a,h)anthracene		ND	ND		5.0
Fluoranthene		ND	6.57		500
Fluorene		ND	ND		360
Indeno(1,2,3-cd)pyrene		ND	ND		5.0
1-Methylnaphthalene		ND	ND		NR
2-Methylnaphthalene		ND	ND		NR
Naphthalene		ND	ND		100
Phenanthrene		ND	6.05		110
Pyrene		ND	5.58		500

Notes:

ND – Not Detected NA – Not Analyzed

Results in mg/Kg, ppm

After completing the soil borings, a groundwater sampling tool consisting of a telescopic four-foot length of wire mesh screen was inserted into a drive point rod. Given that a dual tube system of soil sample collection was being used, the wire mesh screen was advanced to the bottom of the outer MacroCore and the MacroCore was retracted by five feet exposing the screen to groundwater. The depth to groundwater was determined to be approximately 24.22 feet in boring B1, 28.6 feet in B2 and 27 feet in B3.

A groundwater sample was collected by lowering a disposable length of polyethylene tubing into the hollow rods and connecting the tubing to a peristaltic pump at the surface. Groundwater was then extracted using the peristaltic pump. The samples were placed in 40-mL vials containing hydrochloric acid as a preservative and one-liter amber jars provided by the laboratory. The samples were then placed on ice for additional preservation.

The groundwater samples were delivered to Pace Analytical Services, LLC of Peachtree Corners, Georgia for analyses. The groundwater samples from borings B1, B2 and B3 were analyzed for volatile organic compounds using EPA Method SW 8260B. Groundwater samples collected from B2 and B3 were also analyzed for polyaromatic hydrocarbons using Method SW 8270D. **Table 2** is a summary of the analyses of the groundwater samples.

# Table 2Summary of Groundwater Sample Analyses – May 7, 2019825 Warner Street, Atlanta, Georgia

Parameter	B1	B2	B3	GA EPD NC's
Volatile Organic Compounds	ND	ND		
Naphthalene	ND	ND	0.0029	400
PAHs	NA	ND	ND	Chemical Specific

Notes:

ND – Not Detected NA – Not Analyzed Results in mg/L, ppm

### 3.0 QUALIFICATION OF SITE AND PROSPECTIVE PURCHASER

The Hazardous Site Reuse and Redevelopment Act has set forth certain criteria in order to qualify for the Brownfield's Limitation of Liability. Based on our understanding of the site, we conclude that both the property and Trees Atlanta meet the Act's requirements as summarized below.

### Subject Property

- 1. Has had a pre-existing release;
- 2. Does not have liens filed under subsection (e) of Code Section 12-8-96 against it;
- 3. Is not listed on the Federal National Priority List
- 4. Is not undergoing response activity by an order of the Environmental Protection Agency;
- 5. Is not a hazardous waste facility as defined in Code Section 12-8-62.

### Trees Atlanta

- 1. Is not a current or former subsidiary, division, parent company or partner of any prior owners of the property;
- 2. Is not the former employer or current employer, nor otherwise affiliated with the current owners of the subject property or any person who has contributed or is contributing to a release on the property;
- 3. Has not found evidence of liens filed under subsection (e) of Code Section 12-8-96 against the property;
- 4. Is not in violation of any order, judgment, statute, rule or regulation subject to the enforcement authority of the director.

### 4.0 CORRECTIVE ACTION PLAN

### 4.1 SUMMARY OF SOIL AND GROUNDWATER CONDITIONS

The suspected source of Lead and PAHs in soil on the subject property is believed to be from fill that was placed on the property and an unknown time. Additional soil investigations will be completed to define the depth and extent of Lead contamination that exists on the property.

### 4.2 CORRECTIVE ACTION COMPLETED OR IN PROGRESS

No corrective actions have been completed on the 825 Warner Street property.

### 4.3 CORRECTIVE ACTION APPROACH AND SELECTED TECHNOLOGIES

Based on the investigations that have been completed, soils contaminated with the Lead and PAHs have been identified east of the building and on the eastern side of the property. These soils do not meet Type 3 or Type 4 Risk Reduction Standards for Lead.

Additional investigations will be conducted to further define the vertical and horizontal extent of elevated concentrations of Lead above the non-residential risk reduction standards. A soil boring will be installed in the area of B2 for the purpose of installing a temporary one-inch groundwater monitoring well. The temporary well will be installed to a depth of 30 feet with ten feet of screen. Soil samples will be collected from the upper one ft. of soil and also just above the saturated zone.

Install additional soil borings in a grid pattern in the area of B2 to further define the extent of soil contamination. The additional soil borings will be installed to a depth of 25 feet. The initial additional four borings will be installed approximately 20 feet to the north, south, east and west of boring B2. Based on visual observations made during the additional boring installations, additional borings will be installed at less or greater distances to define the extent of soil contamination. We estimate that a total of 8 to 10 borings can be installed to a depth of 25 feet. Soil samples will be collected at depths of 0-1 ft., at the depth suspected of being the highest level of Lead in soil (7-10 feet in B2) and one additional sample at a

greater depth per boring. The proposed soil boring locations are shown Figure 5.

A groundwater sample will be collected from the temporary well after purging the well. The well will be purged using a peristaltic pump. Turbidity will be monitored, and a sample collected once the turbidity is below 10 NTU (if possible). The groundwater sample will be analyzed for total and dissolved Lead. Surface soil samples will be analyzed for RCRA Metals. Subsurface soil samples will be analyzed for total Lead. Additional soil samples will also be collected from other areas of the property and from below the building footprint once the existing building is demolished. The additional soil samples will also be analyzed for RCRA Metals.

If soil contaminated with Lead is found on the subject property that is above Type 3 or Type 4 Risk Reduction Standards, these soils will be remediated using excavation and off-site disposal.

The excavation, handling, transportation and disposal of the volatile organic compounds material will be performed in a manner to prevent contamination of the surrounding, un-impacted areas and in accordance with applicable federal, State and local laws. Any soils containing contaminants of concern (COC's) which require off-site disposal will be placed on a liner or barrier before placement on the ground or pavement. The excavated contaminated soil will be transported in compliance with all applicable regulations for transporting such waste and disposal at a pre-approved disposal facility permitted to accept the designated waste.

If the results of the investigations identify soil above the appropriate risk reduction standards inside the building or adjacent to the building, an alternative method of remediation may be necessary. In-situ chemical oxidation may be utilized to reduce the concentrations of contaminants to below the appropriate risk reduction standards. If an alternative method is selected for remediation, a CAP Amendment will be submitted with details of the proposed implementation and confirmation methodology.

All work will be performed in accordance with applicable regulations, and in accordance with a site specific Health and Safety Plan and OSHA Standards.

### 4.3.1 Effectiveness

If any soil removal or treatment is required, confirmation soil sampling will be conducted to determine the effectiveness of the removal or treatment activities. In the area of soil boring B2, delineation samples will be used to verify the effectiveness of the soil removal. In other areas, confirmation samples will be collected every 25 feet along side walls of the excavation with a minimum of four per excavation. One confirmation soil sample will be collected for every 625 square feet of the excavation floor. The confirmation soil samples will be analyzed for contaminants of concern.

The results of the soil sample analyses will be compared to the applicable Risk Reduction Standards. Confirmation soil samples will be used to confirm the effectiveness of the removal process.

4.3.2 Other Regulatory or Permitting Requirements

If required, transporters and facilities licensed to handle the waste will be utilized during the removal project. Consideration will be given to the possible risks associated with vapor intrusion. Appropriate mitigation measures would be implemented to reduce the risk associated with vapor intrusion.

The prospective purchaser will work with the Georgia EPD, prior to collecting any additional samples, to determine the specific locations and number of samples to be collected for additional assessment.

### 4.4 SCHEDULE

Additional site investigations will be implemented within six (6) months of acquisition of the property. The prospective purchaser compliance status report will be submitted to the Georgia EPD on or prior to December 31, 2020.
#### **5.0 PREPARATION OF CSR**

An environmental consultant will prepare a Prospective Purchaser Compliance Status Report (PPCSR) on behalf of Trees Atlanta. The written report will consist of information in the format required for submission to the Georgia EPD. The PPCSR will include the following:

- A legal description of the property which comprises the Brownfield site,
- A description of each known source of release,
- A summary of all pertinent field and laboratory data,
- Definition of the horizontal and vertical extent of on-site soil contamination above HSRA notification concentrations,
- A baseline of groundwater conditions will be established,
- A description of geologic and hydrogeologic conditions at the site,
- Analytical results with chain of custody,
- A legal description and, if available, a survey plat,
- A description of the corrective actions used to bring the property into compliance with the RRS,
- A description of existing or potential human or environmental receptors and risk reduction standards,
- A summary of previous actions taken to eliminate, control, or minimize the potential risk at the site,
- An evaluation of the vapor intrusion pathway will be evaluated and addressed as necessary,
- Documentation of the proper characterization, transportation, and disposal of contaminated soils and/or hazardous wastes, if any, and,
- A concise statement of findings or the report including Trees Atlanta compliance with the appropriate soil risk reduction standards.
- Signature and seal of a Georgia Registered Professional Geologist and/or Professional Engineer.

#### 6.0 CERTIFICATION STATEMENT

I certify that this report and all attachments were prepared under my direction in accordance with a system designed to assure that qualified personnel properly evaluated the information submitted. Based on my inquiry of the person or persons who prepared the information, the information submitted is, to the best of my knowledge, belief, true, accurate, and complete.

Courie Vectes

Ms. Connie Veates, COO Trees Atlanta

6-13-19

Date

Thomas Refuge

Thomas R. Harper, Technical Director Environmental Technology Resources, Inc.

June 17, 2019

Date

825 Warner Street, SW, Atlanta, Georgia Prospective Purchaser Corrective Action Plan

Figures



Source: U.S. Geologic Survey

**ETRI** Environmental Technology Resources, Inc. 4780 Ashford Dunwoody Rd. Suite A-456 Atlanta, Georgia 30338

Scale: Not to Scale

FIGURE 1 SITE LOCATION MAP 825 Warner Street Atlanta, Georgia Project Number 19-064



	ETRI	FIGURE 2
Source: Fulton County Tax Assessor	Environmental Technology Resources, Inc.	TAX MAP
	4780 Ashford Dunwoody Rd.	825 Warner Street
	Suite A-456	Atlanta, Georgia
	Atlanta, Georgia 30338	
	Scale: Noted	Project Number 19-064



ETRI Environmental Technology Resources, Inc.	Source: Bing.com/maps			FIGURE 3 SITE PLAN
4780 Ashford Dunwoody Rd. Suite A-456	Project No. Scale Date			825 Warner Street
Atlanta, Georgia 30338	19-064	Not to Scale	2018	Atlanta, Georgia



ETRI
------

Environmental Technology Resources, Inc. 4780 Ashford Dunwoody Rd. Suite A-456 Atlanta, Georgia 30338

<ul><li>Source: Bing.com/maps</li><li>Soil Boring Location</li></ul>				
Project No.	Scale	Date		
19-064	Not to Scale	2018		

FIGURE 4
SOIL BORING LOCATIONS AND ANALYTICAL
RESULTS
325 Warner Street
Atlanta, Georgia



ETRI
------

Environmental Technology Resources, Inc. 4780 Ashford Dunwoody Rd. Suite A-456 Atlanta, Georgia 30338

Proposed Soil Boring Location				
<ul> <li>Soil Boring Location</li> </ul>				
Project No.	Scale			
19-064 Not to Scale				

Date

2018

FIGURE 5
PROPOSED SOIL BORING LOCATIONS
825 Warner Street
Atlanta, Georgia

Appendix A – Legal Description

Legal Description 825 Warner Street, SW Atlanta, Fulton County, Georgia

> Deed Book 57421 Pg 597 Cathelene Robinson Clerk of Superior Court Fulton County, Georgia

#### EXHIBIT "A"

All that tract or parcel of land lying and being in the City of Atlanta, in Land Lot 106 of the  $14^{10}$  District of Fulton County, Georgia, and being more particularly described as follows:

BEGINNING at the northwest corner of Warner Street and Allene Avenue; thence wast along the north side of Warner Street 533 feet; thence north 258.6 feet to the center line of the right of way conveyed by the F. B. Golian Company to the Atlanta and West Point Railroad Company by Warranty deed dated June 6, 1923, and recorded in Deed Book 1176, Page 294, Fulton County Records; thence in an easterly and southerly direction along the center line of said right of way 552.4 feet to the West side of Allene Avenue; thence south along the went side of Allena Avenue 177.3 feet to the point of beginning; being improved property known as \$25 Warner Street, Atlanta, Georgia according to the present system of numbering in the City of Atlanta, Fulton County, Georgia, and being the same property conveyed by Mom's Bakery, Inc., to Chester L. Gray and Neal Gray by warranty deed dated January 1, 1984, and recorded in Deed Book 8536, Page 21, Fulton County, Georgia Records.

SUBJECT TO that certain right of way easement granted by Chester L. Gray and Neal Gray in favor of Southern Bell Telephone and Telegraph Company dated April 1, 1990, and recorded August 31, 990, at Deed Book 13684, Page 244, Fulton County Records.

Appendix B – Phase II Environmental Site Assessment Report - 2019

## **ETRI**

#### **Environmental Technology Resources, Inc.**

May 29, 2019

Ms. Connie Veates Co-Executive Director and Chief Operating Officer Trees Atlanta 225 Chester Avenue, SE Atlanta, Georgia 30316

Re: Phase II Environmental Site Assessment Report 825 Warner Street Atlanta, Fulton County, Georgia

Dear Ms. Veates:

As you know, Oneida Total Integrated Enterprises was retained by the U.S. EPA Region IV and Trees Atlanta in April 2019 to complete a Phase I Environmental Site Assessment of the property located at 825 Warner Street in Atlanta, Fulton County, Georgia ("subject property"). The location of the property is shown in **Figure 1**.

The results of the Phase I ESA identified recognized environmental conditions associated with the prior use of the subject property along with a documented release on off-site properties. The Phase I ESA identified the following recognized environmental conditions on the subject property.

- The regulatory database report identifies the property at 717 Warner Street on the US Brownfields database. This property was identified on the southeast corner of the subject property. The property description is "former drum storage facility". The Phase I report noted that a Phase II investigation conducted in 2006 did not identify any volatile organic compounds in groundwater.
- The subject property was identified on the SPILLS database due to an incident that occurred on August 27, 2010. The report indicates that an unknown amount of oil was discharged into a storm drain from any unknown source.

The following off-site RECs were identified in the Phase I ESA Report.

- A 1978 Sanborn map indicates that the adjacent property had transformers which may have contained PCBs.
- A US Brownfields site located at 1121 Allene Avenue is located adjacent to the southeast side of the subject property. The adjacent property was identified as formerly having a drum storage facility.
- Champion International, which is located 500 feet south of the subject property, was identified as a LUST site.
- ESB, Inc., which is located 0.294 miles from the subject property was identified as a State Hazardous Waste Site due to a release of Lead.
- Bernstein Scrap Metal is located approximately 500 feet to the northwest. This property was identified as having a release of Lead and is listed as a non-hazardous waste site.
- Four historic auto sites are located within 586 feet of the subject property.

#### Based on the findings from the Phase I, Oneida Total Integrated Enterprises recommended that a Phase II ESA be

completed.

#### METHODS AND RESULTS OF SOIL AND GROUNDWATER INVESTIGATIONS

ETRI initially notify the Utility Protection Center (UPC) to identify underground utilities in the areas that would be investigated. UPC completed the utility locate (Ticket No. 05029-500-041) prior to beginning on-site work.

On May 7, 2019, ETRI and its subcontractor, GeoLab Drilling mobilized to the site to install the soil borings. Three soil borings were installed on the property. Soil boring B1 was located on the southwest side of the property. Soil boring B2 was installed east of the southeast corner of the building and soil boring B3 was installed on the northeast side of the property and adjacent to an outside rail loading dock area. The locations of the soil borings are shown in **Figure 2**.

The soil borings were installed using Geoprobe® direct push technology (DPT) drill rig. The soil borings were advanced to a depth of 35 feet. The soil samples were screened for total volatile organic compounds using a field calibrated MiniRae 3000 - Photoionization Detector (PID). Soil samples were selected for analyses based on discoloration, odors and PID readings. Soil boring logs are included in **Attachment A**.

The samples were submitted to Pace Analytical Services, LLC of Peachtree Corners, Georgia for analyses. The soil samples collected from boring B1 at a depth of 3-4 feet, B2 at 7-10 feet and B3 at 2-3 feet were analyzed for RCRA Metals. The soil samples collected from B1 at 5-10 feet, B2 at 7-10 feet and B3 at 2-3 feet were analyzed for volatile organic compounds (VOC's) and polyaromatic hydrocarbons (PAHs). Samples VOC's were analyzed using EPA Method SW8260B, PAHs using EPA Method SW 8270D and RCRA Metals were analyzed using Method SW 6010D and 7471B. The results of the analyses of the soil samples are summarized in **Table 1** and are shown in **Figure 2**. The analytical report is included in **Attachment B**.

Parameter	B1-3-4'	B1-5-10'	B2-7-10'	B3-2-3'	GA EPD NC's
Metals		NA			
Arsenic	ND		27.9	15.4	41
Barium	63.9		276	218	500
Cadmium	3.7		28.9	7.3	39
Chromium	47.5		31.9	42.6	1,200
Lead	39.2		5,880	109	400
Mercury	ND		ND	ND	17
Selenium	ND		ND	ND	36
Silver	ND		ND	ND	10
Volatile Organic Compounds	NA	ND		NA	Chemical Specific
Naphthalene		ND	0.0086		100
PAHs	NA	ND			Chemical

Table 1				
Summary of Soil Sample Analyses – May 7, 2019				
825 Warner Street, Atlanta, Georgia				

Parameter	B1-3-4'	B1-5-10'	B2-7-10'	B3-2-3'	GA EPD
					NC's
					Specific
Anthracene		ND	ND		500
Benzo(a)anthracene		ND	ND		5.0
Benzo(a)pyrene		ND	ND		1.64
Benzo(b)fluoranthene		ND	ND		5.0
Benzo(k)fluoranthene		ND	ND		5.0
Benzo(g,h,i) perylene		ND	ND		500
Chrysene		ND	ND		5.0
Dibenzo(a,h)anthracene		ND	ND		5.0
Fluoranthene		ND	6.57		500
Fluorene		ND	ND		360
Indeno(1,2,3-cd)pyrene		ND	ND		5.0
1-Methylnaphthalene		ND	ND		NR
2-Methylnaphthalene		ND	ND		NR
Naphthalene		ND	ND		100
Phenanthrene		ND	6.05		110
Pyrene		ND	5.58		500

Notes:

ND – Not Detected NA – Not Analyzed

Results in mg/Kg, ppm

After completing the soil borings, a groundwater sampling tool consisting of a telescopic four-foot length of wire mesh screen was inserted into a drive point rod. Given that a dual tube system of soil sample collection was being used, the wire mesh screen was advanced to the bottom of the outer MacroCore and the MacroCore was retracted by five feet exposing the screen to groundwater. The depth to groundwater was determined to be approximately 24.22 feet in boring B1, 28.6 feet in B2 and 27 feet in B3.

A groundwater sample was collected by lowering a disposable length of polyethylene tubing into the hollow rods and connecting the tubing to a peristaltic pump at the surface. Groundwater was then extracted using the peristaltic pump. The samples were placed in 40-mL vials containing hydrochloric acid as a preservative and one-liter amber jars provided by the laboratory. The samples were then placed on ice for additional preservation.

The groundwater samples were delivered to Pace Analytical Services, LLC of Peachtree Corners, Georgia for analyses. The groundwater samples from borings B1, B2 and B3 were analyzed for volatile organic compounds using EPA Method SW 8260B. Groundwater samples collected from B2 and B3 were also analyzed for polyaromatic hydrocarbons using Method SW 8270D. Table 2 is a summary of the analyses of the groundwater samples.

# Table 2Summary of Groundwater Sample Analyses – May 7, 2019825 Warner Street, Atlanta, Georgia

Parameter	B1	B2	B3	GA EPD NC's
Volatile Organic Compounds	ND	ND		
Naphthalene	ND	ND	0.0029	400
PAHs	NA	ND	ND	Chemical Specific

Notes:

ND – Not Detected NA – Not Analyzed

Results in mg/L, ppm

After reviewing the results of the sample analyses and specifically the high concentration of Lead in soil boring B2 at a depth of 7 - 10 feet, additional testing was performed to determine the leachability of this soil. The leachability of the soil was determined using the Synthetic Precipitation Leaching Procedure (EPA). The SPLP is applicable for materials where the leaching potential due to normal rainfall is to be determined. Instead of the landfill leachate simulating acetic acid mixture, nitric and sulfuric acid are utilized in an effort to simulate the acid rains resulting from nitic and sulfuric oxides.

The B2-7-10 ft. sample was analyzed by Analytical Environmental Services, Inc. of Atlanta, Georgia. The SPLP analyses was performed using EPA SW-846, Method 1312. The results of the SPLP Lead analyses determined that the leachability of sample B2-7-10 ft. is 0.168 mg/L. The drinking water standard for Lead is 0.015 mg/L.

#### **DISCUSSION OF RESULTS**

Three soil borings were installed as part of a Phase II ESA on the property located at 825 Warner Street in Atlanta, Georgia. The following conclusions can be made regarding the results of the Phase II ESA.

- A high concentration of total Lead (5,880 mg/Kg) was detected in a sample collected from soil boring B2 at a depth of 7-10 feet. Fluoranthene, Phenanthrene and Pyrene were also detected in this sample. The Lead leachability of this sample, as determined by the SPLP procedure, was determined to be 0.168 mg/L
- Naphthalene was detected in a groundwater sample collected from boring B3 at a concentration of 0.0029 mg/L.
- The results of the Phase II ESA determined that off-site properties have had little, if any impact to the environmental conditions of the property.
- The August 2010 spill event does not appear to have had an impact on groundwater on the subject property.

Under the Georgia Hazardous Site Response Act, notification to the Georgia EPD Hazardous Site Response and Remediation Program is required when concentrations of contaminants in soils exceed notification concentrations. Petroleum releases are exempt from notification under HSRA. The concentration of Lead detected in the soil sample collected from boring B2 is greater than the Georgia EPD HSRA Notification concentrations.

Notification is also required when groundwater contamination exceeds drinking water standards. The concentration of Naphthalene in groundwater in B3 is below the EPA Maximum Contaminant Level (MCL) and notification would not be required.

Once notified, the Georgia EPD will evaluate the information provided in the release notification using the Reportable Quantity Screening Method (RQSM). Some of the factors that are used in evaluating a release to soil include the toxicity of the chemical released, accessibility to the property and the distance to the nearest residence or day care center. Some of the factors that are used in evaluating a release to groundwater include the toxicity of the chemical released to the nearest private or public drinking water well.

If you have any questions related to the report, please give me a call at (770) 888-8181.

Sincerely, ENVIRONMENTAL TECHNOLOGY RESOURCES, INC.

Thomas Refarger

Thomas R. Harper Technical Director

Attachments

19-064 - Phase 2 ESA Report

Figures



Source: U.S. Geologic Survey

**ETRI** Environmental Technology Resources, Inc. 4780 Ashford Dunwoody Rd. Suite A-456 Atlanta, Georgia 30338

Scale: Not to Scale

FIGURE 1 SITE LOCATION MAP 825 Warner Street Atlanta, Georgia Project Number 19-064



ETRI
------

Environmental Technology Resources, Inc. 4780 Ashford Dunwoody Rd. Suite A-456 Atlanta, Georgia 30338

Source: Bing.co Soil Boring I	m/maps Location	
Project No.	Scale	Date
19-064	Not to Scale	2018

FIGURE 2 SOIL BORING LOCATIONS AND ANALYTICAL RESULTS 825 Warner Street Atlanta, Georgia

Attachment A – Soil Boring Logs

## SOIL BORING LOG

Project:	825 Warne	er Street			Location: Southwest Side of Property		
Date Ins	talled: May	7, 2019			Elevation: TOC:		
Drilling N	lethod: Dir	ect Push			Total Depth of Boring: 35.0 feet		
Drilling C	Company: (	GeoLab Dri	lling		Boring: B1		
Driller: R	andy		0		Depth to Water From TOC:		
Sampler	Type: Con	tinuous - D	irect Push		Geologist:		
	Sample Number	Blows/6"	PID/FID (ppm)	USCS (sym)			
			0		Reddish-brown silty LOAM		
5			0 1.1		Reddish-brown clay LOAM with dark gray mottling Reddish-brown sandy silt LOAM with gravel		
10			0.1		Reddish-brown sandy SILT		
15			0.2		Reddish-brown/off-white SAPROLITE Reddish-brown/brown/off-white/dark gray SAPROLITE		
20			0		Reddish-brown/tan-brown clayey SILT to 21.5 feet Reddish-brown/brown/off-white/dark gray SAPROLITE		
25			0		Groundwater at 24.22 feet Reddish-brown/daark gray SAPROLITE to 29.5 feet		
30			0		Off-white quartz rock at 29.5 - 30 feet Gray-brown sandy SILT to 32 feet Off-white/gray-brown SAPROLITE		
35					Boring terminated at 35 feet		

## SOIL BORING LOG

Project:	825 Warne	r Street			Location: East of SE Corner of Building
Date Ins	talled: May	7, 2019			Elevation: TOC:
Drilling N	lethod: Dir	ect Push			Total Depth of Boring: 35.0 feet
Drilling C	Company: C	GeoLab Dri	lling		Boring: B2
Driller: R	andy				Depth to Water From TOC:
Sampler	Type: Con	tinuous - D	irect Push		Geologist:
	Sample Number	Blows/6"	PID/FID (ppm)	USCS (sym)	
					Asphalt and Crusher
			0.1		Brown/dark brown silty LOAM
5			0.1 0		Brown sandy silt LOAM and gravel Reddish-brown/gray-brown silty LOAM
			13.1		Dark gray material resembling cinders - 7-10 feet
10			0		Reddish-brown clayey silt LOAM
15			0		Tan-brown/reddish-brown/off-white SAPROLITE
20			0		Tan-brown/gray-brown/dark gray SAPROLITE
25			0		Gray-brown/orange-brown/off-white SAPROLITE
					Groundwater at 28.75 feet
30			0		Gray-brown/orange-brown/off-white SAPROLITE
35					Boring terminated at 35 feet

## SOIL BORING LOG

Project:	825 Warne	r Street			Location: Northeast Side of Property			
Date Ins	talled: May	7, 2019			Elevation: TOC:			
Drilling N	lethod: Dir	ect Push			Total Depth of Boring: 35.0 feet			
Drilling C	company: C	GeoLab Dri	lling		Boring: B3			
Driller: R	andy				Depth to Water From TOC:			
Sampler	Type: Con	itinuous - D	irect Push		Geologist:			
	Sample Number	Blows/6"	PID/FID (ppm)	USCS (sym)				
<u> </u>					Gravel and Crusher Run to 1.5 feet			
5			0.4 0 0		Gray-brown silty LOAM Reddish-brown silty clay LOAM Reddish-brown sandy silt LOAM Reddish-brown clay LOAM			
10			0		Reddish-brown clay LOAM			
15			0		Tan-brown/reddish-brown clayey SILT to 18 feet			
20			0		Tan-brown/gray/dark gray/off-white SAPROLITE			
25			0					
30			0		Groundwater at 29 feet Gray-brown/gray/off-white/orange-brown SAPROLITE			
35					Boring terminated at 35 feet			

Attachment B – Laboratory Analytical Report



Pace Analytical Services, LLC 110 Technology Parkway Peachtree Corners, GA 30092 (770)734-4200

May 16, 2019

Tom Harper Environmental Technology Resources, Inc 4780 Ashford Dunwoody Road Suite A-456 Atlanta, GA 30338

RE: Project: 825 Warner Street 19-064 Pace Project No.: 2618256

Dear Tom Harper:

Enclosed are the analytical results for sample(s) received by the laboratory on May 07, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

San m. ma

Sakina Mckenzie sakina.mckenzie@pacelabs.com (770)734-4200 Project Manager

Enclosures

cc: Mr. Tom Harper Rebecca Thornton, Pace Analytical Atlanta





Pace Analytical Services, LLC 110 Technology Parkway Peachtree Corners, GA 30092 (770)734-4200

#### CERTIFICATIONS

Project: 825 Warner Street 19-064 Pace Project No.: 2618256

#### **Atlanta Certification IDs**

110 Technology Parkway Peachtree Corners, GA 30092 Florida DOH Certification #: E87315 Georgia DW Inorganics Certification #: 812 Georgia DW Microbiology Certification #: 812 North Carolina Certification #: 381 South Carolina Certification #: 98011001 Virginia Certification #: 460204



#### SAMPLE SUMMARY

Project: 825 Warner Street 19-064 Pace Project No.: 2618256

Lab ID	Sample ID	Matrix	Date Collected	Date Received
2618256001	B1-5-10'	Solid	05/07/19 08:27	05/07/19 13:46
2618256002	B2-7-10'	Solid	05/07/19 09:30	05/07/19 13:46
2618256003	B3-2-3'	Solid	05/07/19 10:44	05/07/19 13:46
2618256004	B1	Water	05/07/19 08:55	05/07/19 13:46
2618256005	B2	Water	05/07/19 10:25	05/07/19 13:46
2618256006	B3	Water	05/07/19 11:24	05/07/19 13:46
2618256007	Trip Blank	Water	05/07/19 00:00	05/07/19 13:46
2618256008	B1-3-4'	Solid	05/07/19 09:05	05/07/19 13:46



#### SAMPLE ANALYTE COUNT

Project: 825 Warner Street 19-064

Pace Project No.: 2618256

Lab ID	Sample ID	Method	Analysts	Analytes Reported
2618256001	B1-5-10'	EPA 8270D	MKI	21
		EPA 8260B	JHG	73
		Pace SOP #204	M10	1
2618256002	B2-7-10'	EPA 6010D	AAP	7
		EPA 7471B	DRB	1
		EPA 8270D	MKI	21
		EPA 8260B	JHG	73
		Pace SOP #204	M10	1
2618256003	B3-2-3'	EPA 6010D	AAP	7
		EPA 7471B	DRB	1
		Pace SOP #204	M10	1
2618256004	B1	EPA 8260B	LIH	64
2618256005	B2	EPA 8270D	MKI	21
		EPA 8260B	LIH	64
2618256006	B3	EPA 8270D	MKI	21
		EPA 8260B	LIH	64
2618256007	Trip Blank	EPA 8260B	LIH	64
2618256008	B1-3-4'	EPA 6010D	AAP	7
		EPA 7471B	DRB	1
		Pace SOP #204	M10	1



Project: 825 Warner Street 19-064

Pace Project No.: 2618256

Results reported on a "dry weight" basis and are adjusted for percent motiture, sample size and any dilutions.         Analyzed         CAS No.         Qual           2070 MSSV PAH         Analytical Method: EPA 82700         Preparation Method: EPA 3546         Analyzed         CAS No.         Qual           Acenaphthem         ND         Up/kg         377         1         OF/31/91 90:00         67/41/90:035         83:32.9           Acenaphtheme         ND         Up/kg         377         1         OF/31/91 90:00         67/41/90:035         83:32.9           Acenaphtheme         ND         Up/kg         377         1         OF/31/91 90:00         67/41/90:036         80:32.9           Banzo(a)pyrene         ND         Up/kg         377         1         OF/31/91 90:00         67/41/90:036         60:53.8           Banzo(a)pyrene         ND         Up/kg         377         1         OF/31/91 90:00         67/41/90:036         62:65.3           Banzo(a)pyrene         ND         Up/kg         377         1         OF/31/91 90:00         67/41/90:036         62:64.4           Chysene         ND         Up/kg         377         1         OF/31/91 90:00         67/41/90:036         62:64.9           Dibarer/a, hyanhracene         ND	Sample: B1-5-10'	Lab ID: 261	8256001	Collected: 05/07/1	9 08:2	7 Received: 05	5/07/19 13:46 N	latrix: Solid	
Parameters         Results         Units         Report Limit         DF         Prepared         Analyzed         CAS No.         Qual           82700 MSSV PAH         Analyzed Method: EPA 82700         Preparation Method: EPA 3546           Acenaphthynen         ND         ug/kg         377         1         65/13/19 19:00         65/14/19 00:36         83-29.4           Acenaphthynen         ND         ug/kg         377         1         65/13/19 19:00         65/14/19 00:36         65-6-3           Anthracene         ND         ug/kg         377         1         65/13/19 19:00         65/14/19 00:36         65-6-3           Benzold/jhyrene         ND         ug/kg         377         1         65/13/19 19:00         65/14/19 00:36         65-7-3           Benzold/jhuomthene         ND         ug/kg         377         1         65/13/19 19:00         65/14/19 00:36         65/7-3           Benzold/jhuomthene         ND         ug/kg         377         1         65/13/19 19:00         65/14/19 00:36         65/7-3           Benzold/jhuomthene         ND         ug/kg         377         1         65/13/19 19:00         65/14/19 00:36         65/7-3           Benzold/jhuomthene         ND         ug/kg         <	Results reported on a "dry weigh	t" basis and are ad	justed for pe	rcent moisture, sa	mple s	size and any dilu	tions.		
Sty PAH         Analytical Method: EPA 8270D Preparation Method: EPA 3646           Acenaphthylene         ND         ug/kg         377         1         05/13/19 10:00         65/14/19 00:36         632.9           Acenaphthylene         ND         ug/kg         377         1         05/13/19 10:00         05/14/19 00:36         620.96.8           Anthracene         ND         ug/kg         377         1         05/13/19 10:00         05/14/19 00:36         60-52.3           Benzo(s)/juroanthene         ND         ug/kg         377         1         05/13/19 10:00         05/14/19 00:36         60-32.4           Benzo(s)/juroanthene         ND         ug/kg         377         1         05/13/19 10:00         05/14/19 00:36         20-9.2           Benzo(s)/juroanthene         ND         ug/kg         377         1         05/13/19 10:00         05/14/19 00:36         20-9.2           Benzo(s)/juroanthene         ND         ug/kg         377         1         05/13/19 10:00         05/14/19 00:36         87-3.7           Benzo(s)/juroanthene         ND         ug/kg         377         1         05/13/19 10:00         05/14/19 00:36         81-3.7           Benzo(s)/juroanthene         ND         ug/kg         377         <	Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Acenaphthree         ND         ugkg         377         1         05/13/19         05/13/19         000         05/14/19         00036         202-98           Acenaphthylene         ND         ugkg         377         1         05/13/19         1000         05/14/19         0036         202-98         3           Benzo(a)phree         ND         ugkg         377         1         05/13/19         1000         05/14/19         0036         202-92         3           Benzo(a)phree         ND         ug/kg         377         1         05/13/19         1000         05/14/19         0036         202-9         3           Benzo(a)phree/lene         ND         ug/kg         377         1         05/13/19         1000         05/14/19         0036         207-08         3         -10-9           Diberz(a) hanthracene         ND         ug/kg         377         1         05/13/19         1000         05/14/19         0038         8-73-7           Fluorene         ND         ug/kg         377         1         05/13/19         1000         05/14/19         0038         8-73-7           Fluorenhene         ND         ug/kg         377         1         05/13/19 <td>8270D MSSV PAH</td> <td>Analytical Met</td> <td>hod: EPA 827</td> <td>OD Preparation Me</td> <td>ethod: E</td> <td>EPA 3546</td> <td></td> <td></td> <td></td>	8270D MSSV PAH	Analytical Met	hod: EPA 827	OD Preparation Me	ethod: E	EPA 3546			
Acenaptitylene         ND         ug/kg         377         1         05/13/19 19:00         05/14/19 00:38         208-96-8           Anthracene         ND         ug/kg         377         1         05/13/19 19:00         05/14/19 00:38         56.55.3           Benzo(g)anthracene         ND         ug/kg         377         1         05/13/19 19:00         05/14/19 00:38         50.32.8           Benzo(g)(noranthene         ND         ug/kg         377         1         05/13/19 19:00         05/14/19 00:38         218-01-9           Benzo(g)(noranthene         ND         ug/kg         377         1         05/13/19 19:00         05/14/19 00:38         218-01-9           Dibenzo(s/f)(noranthene         ND         ug/kg         377         1         05/13/19 19:00         05/14/19 00:38         218-01-9           Fluoranthene         ND         ug/kg         377         1         05/13/19 19:00         05/14/19 00:38         91-76           Hotehynapthialene         ND         ug/kg         377         1         05/13/19 19:00         05/14/19 00:38         91-76           Anthropome         Ug/kg         377         1         05/13/19 19:00         05/14/19 00:38         91-76           Hotethynapthialene <td>Acenaphthene</td> <td>ND</td> <td>ug/kg</td> <td>377</td> <td>1</td> <td>05/13/19 19:00</td> <td>05/14/19 00:36</td> <td>83-32-9</td> <td></td>	Acenaphthene	ND	ug/kg	377	1	05/13/19 19:00	05/14/19 00:36	83-32-9	
Anthrisone       ND       ug/kg       377       1       05/13/19 19:00       05/14/19 00:35       120-12-7         Benzo(a)pyrene       ND       ug/kg       377       1       05/13/19 19:00       05/14/19 00:35       56.85.3         Benzo(a)pyrene       ND       ug/kg       377       1       05/13/19 19:00       05/14/19 00:35       205-99-2         Benzo(a)pyrene       ND       ug/kg       377       1       05/13/19 19:00       05/14/19 00:35       207-08-9         Benzo(a)pyrene       ND       ug/kg       377       1       05/13/19 19:00       05/14/19 00:35       207-08-9         Chrysene       ND       ug/kg       377       1       05/13/19 19:00       05/14/19 00:35       86-73-7         Fluoranthene       ND       ug/kg       377       1       05/13/19 19:00       05/14/19 00:36       81-37         Fluoranthene       ND       ug/kg       377       1       05/13/19 19:00       05/14/19 00:36       81-37         Fluoranthene       ND       ug/kg       377       1       05/13/19 19:00       05/14/19 00:38       16-5         Phenanthrene       ND       ug/kg       377       1       05/13/19 19:00       05/14/19 00:38       16-5 <td>Acenaphthylene</td> <td>ND</td> <td>ug/kg</td> <td>377</td> <td>1</td> <td>05/13/19 19:00</td> <td>05/14/19 00:36</td> <td>208-96-8</td> <td></td>	Acenaphthylene	ND	ug/kg	377	1	05/13/19 19:00	05/14/19 00:36	208-96-8	
Benzo(a)pinthracene         ND         up/kg         377         1         05/13/19         05/14/19         036         65-65-32           Benzo(b)fluoranthene         ND         ug/kg         377         1         05/13/19         05/14/19         036         03-24           Benzo(b)fluoranthene         ND         ug/kg         377         1         05/13/19         05/14/19         036         03-08-9           Benzo(b)fluoranthene         ND         ug/kg         377         1         05/13/19         05/14/19         036         370-8-9           Chrysene         ND         ug/kg         377         1         05/13/19         05/14/19         036         57-03           Fluoranthene         ND         ug/kg         377         1         05/13/19         05/14/19         036         67-47-1           Indeno(1,2,3-cd)pyrene         ND         ug/kg         377         1         05/13/19         05/14/19         036         68-7-37           Indeno(1,2,3-cd)pyrene         ND         ug/kg         377         1         05/13/19         05/14/19         03         69-12-0           Puethylnaphthalene         ND         ug/kg         377         1         05/13/19	Anthracene	ND	ug/kg	377	1	05/13/19 19:00	05/14/19 00:36	120-12-7	
Benzoginjvene         ND         ujkg         377         1         0/5/13/19         05/14/19         0.50         05/24.14         0.50         05/24.14         0.50         05/24.14         0.50         05/24.14         0.50         05/24.14         0.50         05/24.14         0.50         05/24.14         0.50         05/24.14         0.50         05/24.14         0.50         05/24.14         0.50         05/24.14         0.50         05/14/19         0.50         05/14/19         0.50         05/14/19         0.50         05/14/19         0.50         05/14/19         0.50         05/14/19         0.50         05/14/19         0.50         05/14/19         0.50         05/14/19         0.50         05/14/19         0.50         05/14/19         0.50         05/14/19         0.50         05/14/19         0.50         05/14/19         0.50         05/14/19         0.50         05/14/19         0.50         05/14/19         0.50         0.50         0.50         0.50         0.50         0.50         0.50         0.50         0.50         0.50         0.50         0.50         0.50         0.50         0.50         0.50         0.50         0.50         0.50         0.50         0.50         0.50         0.50         0.50 <td>Benzo(a)anthracene</td> <td>ND</td> <td>ug/kg</td> <td>377</td> <td>1</td> <td>05/13/19 19:00</td> <td>05/14/19 00:36</td> <td>56-55-3</td> <td></td>	Benzo(a)anthracene	ND	ug/kg	377	1	05/13/19 19:00	05/14/19 00:36	56-55-3	
Benzo(jhluranthene         ND         ug/kg         377         1         0/5/13/19         000         0/5/14/19         0.036         205-99-2           Benzo(jhluranthene         ND         ug/kg         377         1         0/5/13/19         0/5/14/19         0.036         19/2-4-2           Chrysene         ND         ug/kg         377         1         0/5/13/19         0/5/14/19         0.03         27-0.8-9           Fluoranthene         ND         ug/kg         377         1         0/5/13/19         0/5/14/19         0.03         66-7.3-7           Indeno(1,2,3-cd)pyrene         ND         ug/kg         377         1         0/5/13/19         0/14/19         0.03         66-7.3-7           Indeno(1,2,3-cd)pyrene         ND         ug/kg         377         1         0/5/13/19         0/14/19         0.03         65-7.3-7           Indeno(1,2,3-cd)pyrene         ND         ug/kg         377         1         0/5/13/19         0/14/19         0.03         65-7.3-7           Indeno(1,2,3-cd)pyrene         ND         ug/kg         377         1         0/5/13/19         0/14/19         0.03         65-7.3-7           Indeno(1,2,3-cd)pyrene         ND         ug/kg         377 </td <td>Benzo(a)pyrene</td> <td>ND</td> <td>ug/kg</td> <td>377</td> <td>1</td> <td>05/13/19 19:00</td> <td>05/14/19 00:36</td> <td>50-32-8</td> <td></td>	Benzo(a)pyrene	ND	ug/kg	377	1	05/13/19 19:00	05/14/19 00:36	50-32-8	
Benzo(k)Inperviene         ND         ug/kg         377         1         05/13/19 19:00         05/14/19 00:36         19:1-2-2           Benzo(k)Invaranthene         ND         ug/kg         377         1         05/13/19 19:00         05/14/19 00:36         207-08-           Dibenz(k)Invaranthene         ND         ug/kg         377         1         05/13/19 19:00         05/14/19 00:36         208-04-           Fluoranthene         ND         ug/kg         377         1         05/13/19 19:00         05/14/19 00:36         807-37-           Fluoranthene         ND         ug/kg         377         1         05/13/19 19:00         05/14/19 00:36         91-2-0           2-MethyInaphthalene         ND         ug/kg         377         1         05/13/19 19:00         05/14/19 00:36         91-2-0           2-MethyInaphthalene         ND         ug/kg         377         1         05/13/19 19:00         05/14/19 00:36         91-2-0           Surragets         ND         ug/kg         377         1         05/13/19 19:00         05/14/19 00:36         126-0-0           2-Fluorobiphenyl (S)         65         %         11-106         1         05/13/19 19:00         05/14/19 00:36         126-0-0	Benzo(b)fluoranthene	ND	ug/kg	377	1	05/13/19 19:00	05/14/19 00:36	205-99-2	
Benzo (huoranthene         ND         ug/kg         377         1         05/13/19 19:00         05/14/19 00:36         218-01-9           Chrysene         ND         ug/kg         377         1         05/13/19 19:00         05/14/19 00:36         218-01-9           Dibrar(a, h)anthracene         ND         ug/kg         377         1         05/13/19 19:00         05/14/19 00:36         8-7-3           Fluoranthene         ND         ug/kg         377         1         05/13/19 19:00         05/14/19 00:36         8-7-3           Indenol 1, 2, -cd)pyrene         ND         ug/kg         377         1         05/13/19 19:00         05/14/19 00:36         90-12-           1-Methyinaphthalene         ND         ug/kg         377         1         05/13/19 19:00         05/14/19 00:36         81-57-6           Naphthalene         ND         ug/kg         377         1         05/13/19 19:00         05/14/19 00:36         41-56-0           Surrogates         ND         ug/kg         377         1         05/13/19 19:00         05/14/19 00:36         416-60-0           2-Fluorobiphenyl (S)         65         %         11-156         1         05/13/19 19:00         05/14/19 00:36         416-60-0	Benzo(g,h,i)perylene	ND	ug/kg	377	1	05/13/19 19:00	05/14/19 00:36	191-24-2	
Chrysene         ND         ug/kg         377         1         05/13/19 19:00         05/14/19 00.36         218-19           Dibenz(a,h)anthracene         ND         ug/kg         377         1         05/13/19 19:00         05/14/19 00.36         208-44-0           Fluorene         ND         ug/kg         377         1         05/13/19 19:00         05/14/19 00.36         80-37-7           1.Methylnaphthalene         ND         ug/kg         377         1         05/13/19 19:00         05/14/19 00.36         91-37-5           2.Methylnaphthalene         ND         ug/kg         377         1         05/13/19 19:00         05/14/19 00.36         91-37-5           Phenanthrene         ND         ug/kg         377         1         05/13/19 19:00         05/14/19 00.36         91-37-5           Prene         ND         ug/kg         377         1         05/13/19 19:00         05/14/19 00.36         91-37-5           Surrogates         -         -         05/13/19 19:00         05/14/19 00.36         21-60-0         -           Strotophenyl (S)         65         %         11-106         1         05/13/19 19:00         05/14/19 00.36         21-60-0           Strotophenyl (S)         65         <	Benzo(k)fluoranthene	ND	ug/kg	377	1	05/13/19 19:00	05/14/19 00:36	207-08-9	
Diberg(a) hjanthracene         ND         ug/kg         377         1         05/13/19         000         03/24         03/34           Fluoranthene         ND         ug/kg         377         1         05/13/19         000         05/14/19         00:38         66-7-7           Indenol (1, 2, 3-cd)pyrene         ND         ug/kg         377         1         05/13/19         000         05/14/19         00:38         69-7-7           1         Methyinaphthalene         ND         ug/kg         377         1         05/13/19         000         05/14/19         00:38         69-10-0           1         Methyinaphthalene         ND         ug/kg         377         1         05/13/19         000         05/14/19         00:38         89-10-0         v<3	Chrysene	ND	ug/kg	377	1	05/13/19 19:00	05/14/19 00:36	218-01-9	
Fluorantene         ND         ug/kg         377         1         05/13/19         00.03         026/14/19         00.33         026/14/19         00.33         026/14/19         00.33         026/14/19         00.33         026/13/19         11.00         05/13/19         11.00         05/13/19         10.00         05/13/19         00.00         05/13/19         00.00         05/13/19         00.00         05/13/19         00.00         05/13/19         00.00         05/13/19         00.00         05/13/19         00.00         05/13/19         00.00         05/13/19         00.00         05/13/19         00.00         05/13/19         00.00         05/13/19         00.00         05/13/19         00.00         05/13/19         00.00         05/13/19         00.00         05/13/19         00.00         05/13/19         00.00         05/13/19         00.00         05/13/19         00.00         05/13/19         00.00         05/13/19         00.00         05/13/19         00.00         05/13/19         00.00         05/13/19         00.00         05/13/19         00.00         05/13/19         00.00         05/13/19         00.00         05/13/19         00.00         05/13/19         00.00         05/13/19         00.00         05/13/19         00.00	Dibenz(a,h)anthracene	ND	ug/kg	377	1	05/13/19 19:00	05/14/19 00:36	53-70-3	
Fluorene         ND         ug/kg         377         1         05/13/19         05/13/19         00         05/14/19         00:36         87-3-7           Indeno(1,2,3-cd)pyrene         ND         ug/kg         377         1         05/13/19         05/14/19         00:36         193-39-5           2-Methyinaphthalene         ND         ug/kg         377         1         05/13/19         05/14/19         00:36         91-5-6           Appthalene         ND         ug/kg         377         1         05/13/19         05/14/19         00:36         91-2-0.3           Phrene         ND         ug/kg         377         1         05/13/19         05/14/19         00:36         45-60-3           Surrogates         ND         ug/kg         377         1         05/13/19         10:0         05/14/19         00:36         45-60-3           2-Fluorobiphenyl (S)         62         %         11-156         1         05/13/19         10:0         05/14/19         00:36         27-6-4-3           2-Fluorobiphenyl (S)         62         %         11-156         1         05/07/19         18:40         05/08/19         01:45         17-0-2-8           Acrolen         ND	Fluoranthene	ND	ug/kg	377	1	05/13/19 19:00	05/14/19 00:36	206-44-0	
Indeno(1,2,3-cd)pyrene       ND       ug/kg       377       1       05/13/19 19:00       05/14/19 00:36       19:39-5         1-Methyinaphthalene       ND       ug/kg       377       1       05/13/19 19:00       05/14/19 00:36       91-2-0         Amethyinaphthalene       ND       ug/kg       377       1       05/13/19 19:00       05/14/19 00:36       91-2-0.3         Phenanthrene       ND       ug/kg       377       1       05/13/19 19:00       05/14/19 00:36       91-20-0.7       v3         Pyrene       ND       ug/kg       377       1       05/13/19 19:00       05/14/19 00:36       4165-60-0       2-110000       31/19 19:00       05/14/19 00:36       31-60-8       2-1100000       31/19 19:00       05/14/19 00:36       31-60-8       2-11000000       31/19 19:00       05/14/19 00:36       31-60-8       31-60-8       31-60-8       31-60-8       31       05/13/19 19:00       05/14/19 00:36       31-60-8       31-60-8       31-60-8       31-60-8       31-60-8       31-60-8       31-60-8       31-60-8       31-60-8       31-60-8       31-60-8       31-60-8       31-60-8       31-60-8       31-60-8       31-60-8       31-60-8       31-60-8       31-60-8       31-60-8       31-60-8       31-60-8       31	Fluorene	ND	ug/kg	377	1	05/13/19 19:00	05/14/19 00:36	86-73-7	
1-Methylnaphthalene         ND         ug/kg         377         1         05/(3/19) 19:00         05/(4/19) 00:36         90-12-0.3           2-Methylnaphthalene         ND         ug/kg         377         1         05/13/19) 19:00         05/14/19) 00:36         91-57-6           Naphthalene         ND         ug/kg         377         1         05/13/19) 19:00         05/14/19) 00:36         85-01-8           Phenanthrene         ND         ug/kg         377         1         05/13/19) 19:00         05/14/19) 00:36         85-01-8           Surrogates         ND         ug/kg         377         1         05/13/19) 19:00         05/14/19) 00:36         4165-60-0           2-Fluorobiphenyl (S)         65         %.         11-156         1         05/13/19) 19:00         05/14/19) 00:36         174-51-0           8260 MSV 5035         Analytical Method:         EPA 8260B         Preparation Method:         EPA 5035         6764-1           Acroleni         ND         ug/kg         51.3         1         05/07/19         14.40         05/08/19 01:45         177-13-1           Bersene         ND         ug/kg         5.1         1         05/07/19         18.40         05/08/19 01:45         174-32-5	Indeno(1,2,3-cd)pyrene	ND	ug/kg	377	1	05/13/19 19:00	05/14/19 00:36	193-39-5	
2-Methylnaphthalene         ND         ug'rkg         377         1         05/13/19 19:00         05/14/19 00:36         91-57-6           Naphthalene         ND         ug/rkg         377         1         05/13/19 19:00         05/14/19 00:36         91-20-3           Phenanthrene         ND         ug/rkg         377         1         05/13/19 19:00         05/14/19 00:36         129-00-0         v3           Surrogates         ND         ug/rkg         377         1         05/13/19 19:00         05/14/19 00:36         129-00-0         v3           Prenohphenyl (S)         65         %         15-126         1         05/13/19 19:00         05/14/19 00:36         121-60-8           P-Terphenyl-d14 (S)         62         %         11-156         1         05/13/19 19:00         05/14/19 00:36         121-60-8           Acctone         ND         ug/rkg         51.3         1         05/07/19 18:40         05/08/19 01:45         17-62-8           Acrolein         ND         ug/rkg         51.3         1         05/07/19 18:40         05/08/19 01:45         17-43-2           Bromocharcene         ND         ug/rkg         51.1         1         05/07/19 18:40         05/08/19 01:45         17-43-2 </td <td>1-Methylnaphthalene</td> <td>ND</td> <td>ug/kg</td> <td>377</td> <td>1</td> <td>05/13/19 19:00</td> <td>05/14/19 00:36</td> <td>90-12-0</td> <td></td>	1-Methylnaphthalene	ND	ug/kg	377	1	05/13/19 19:00	05/14/19 00:36	90-12-0	
Naphthalene         ND         ug/kg         377         1         05/13/19 19:00         05/14/19 00:36         91-20-3           Phenanthrene         ND         ug/kg         377         1         05/13/19 19:00         05/14/19 00:36         85-01-8           Pyrene         ND         ug/kg         377         1         05/13/19 19:00         05/14/19 00:36         4165-60-0           Surrogates         ND         ug/kg         11-106         1         05/13/19 19:00         05/14/19 00:36         21-60-8           P-Terphenyl-G14 (S)         65         %.         15-126         1         05/13/19 19:00         05/14/19 00:36         21-60-8           P-Terphenyl-G14 (S)         62         %.         11-156         1         05/07/19 18:40         05/08/19 01:45         67-64-1           Acrolein         ND         ug/kg         51.3         1         05/07/19 18:40         05/08/19 01:45         107-12-8           Acrylonitrile         ND         ug/kg         51.1         1         05/07/19 18:40         05/08/19 01:45         107-13-1           Benzene         ND         ug/kg         51.1         1         05/07/19 18:40         05/08/19 01:45         107-13-1           Bromodichoromethane	2-Methylnaphthalene	ND	ug/kg	377	1	05/13/19 19:00	05/14/19 00:36	91-57-6	
Phenanthrene         ND         ug/kg         377         1         05/13/19         05/14/19         00:03         85-01-8           Pyrene         ND         ug/kg         377         1         05/13/19         05/14/19         00:03         85-01-8         73           Surrogates         ND         ug/kg         377         1         05/13/19         05/14/19         00:03         316-60-0         2-1           2-Fluorobiphenyl (S)         65         %.         11-166         1         05/13/19         05/14/19         00:03         1718-51-0           2-Fluorobiphenyl (S)         62         %.         11-156         1         05/07/19         18:40         05/08/19         01:45         1718-51-0           2-Edo MSV 5035         Analytical Method: EPA 8260B         Preparation Method:         EPA 8260B         51.3         1         05/07/19         18:40         05/08/19         01:45         17-1-1           Acrolein         ND         ug/kg         51.3         1         05/07/19         18:40         05/08/19         14.5         17-43-1           Berzene         ND         ug/kg         51.1         1         05/07/19         18:40         05/08/19         11.45         10.8	Naphthalene	ND	ug/kg	377	1	05/13/19 19:00	05/14/19 00:36	91-20-3	
Pyrene         ND         ug/kg         377         1         05/13/19         19:00         05/14/19         00:00         129-00-0         v3           Surrogates         ND         ug/kg         377         1         05/13/19         19:00         05/14/19         00:00         4165-60-0           2-Fluorobiphenyl (S)         65         %.         15-126         1         05/13/19         19:00         05/14/19         00:00         21-60-8           2-Fluorobiphenyl (S)         62         %.         11-156         1         05/13/19         19:00         05/14/19         00:00         1718-51-0           8260 MSV 5035         Analytical Method: EPA 8260B         Preparation         ND         05/07/19         18:40         05/08/19         01:45         107-02-8           Accrolen         ND         ug/kg         51.3         1         05/07/19         18:40         05/08/19         01:45         107-13-1           Benzene         ND         ug/kg         51.3         1         05/07/19         18:40         05/08/19         01:45         108-86-1           Bromochioromethane         ND         ug/kg         51.1         1         05/07/19         18:40         05/08/19         0	Phenanthrene	ND	ug/kg	377	1	05/13/19 19:00	05/14/19 00:36	85-01-8	
Surrogates         Number 2000         Strand 2000 <trand 2000<="" th="">         Strand 2000         <t< td=""><td>Pyrene</td><td>ND</td><td>ug/kg</td><td>377</td><td>1</td><td>05/13/19 19:00</td><td>05/14/19 00:36</td><td>129-00-0</td><td>v3</td></t<></trand>	Pyrene	ND	ug/kg	377	1	05/13/19 19:00	05/14/19 00:36	129-00-0	v3
Nitrobenzene-d5 (S)         48         %.         11-106         1         05/13/19 19:00         05/14/19 00:36         14:56-00           2-Fluorobiphenyl (S)         65         %.         15:126         1         05/13/19 19:00         05/14/19 00:36         321-60-8           p-Terphenyl-d14 (S)         62         %.         11-156         1         05/13/19 19:00         05/14/19 00:36         718-51-0           8260 MSV 5035         Analytical Method:         EPA 8260B         Preparation Method:         EPA 5035           Acctolein         ND         ug/kg         51.3         1         05/07/19 18:40         05/08/19 01:45         67-64-1           Acrolein         ND         ug/kg         51.3         1         05/07/19 18:40         05/08/19 01:45         107-13-1           Benzene         ND         ug/kg         51.3         1         05/07/19 18:40         05/08/19 01:45         74-43-2           Bromochloromethane         ND         ug/kg         51.1         1         05/07/19 18:40         05/08/19 01:45         74-97-5           Bromochloromethane         ND         ug/kg         51.1         1         05/07/19 18:40         05/08/19 01:45         75-27-4           Bromochloromethane         ND	Surrogates		0 0						
2-Fluorobiphenyl (S)         65         %.         15-126         1         05/13/19 19:00         05/14/19 00:36         321-60-8           p-Terphenyl-d14 (S)         62         %.         11-156         1         05/13/19 19:00         05/14/19 00:36         321-60-8           8260 MSV 5035         Analytical Method:         EPA 8260B         Preparation         EPA 5035           Acctone         ND         ug/kg         103         1         05/07/19 18:40         05/08/19 01:45         67-64-1           Acrolein         ND         ug/kg         51.3         1         05/07/19 18:40         05/08/19 01:45         70-70-78           Benzene         ND         ug/kg         51.3         1         05/07/19 18:40         05/08/19 01:45         71-43-2           Bromobenzene         ND         ug/kg         51.1         1         05/07/19 18:40         05/08/19 01:45         75-27-4           Bromodichioromethane         ND         ug/kg         51.1         1         05/07/19 18:40         05/08/19 01:45         75-27-3           Bromodichioromethane         ND         ug/kg         51.1         1         05/07/19 18:40         05/08/19 01:45         75-27-3           Bromodichioromethane         ND         ug/k	Nitrobenzene-d5 (S)	48	%.	11-106	1	05/13/19 19:00	05/14/19 00:36	4165-60-0	
p-Terphenyl-d14 (S)         62         %.         11-156         1         05/13/19 19:00         05/14/19 00:36         718-51-0           8260 MSV 5035         Analytical Method: EPA 8260B         Preparation Method: EPA 5035           Acetone         ND         ug/kg         10.3         1         05/07/19 18:40         05/08/19 01:45         67-64-1           Acrolein         ND         ug/kg         51.3         1         05/07/19 18:40         05/08/19 01:45         71-43-2           Benzene         ND         ug/kg         51.3         1         05/07/19 18:40         05/08/19 01:45         74-97-5           Bromochloromethane         ND         ug/kg         51.1         1         05/07/19 18:40         05/08/19 01:45         74-97-5           Bromochloromethane         ND         ug/kg         51.1         1         05/07/19 18:40         05/08/19 01:45         75-27-4           Bromochoromethane         ND         ug/kg         10.3         1         05/07/19 18:40         05/08/19 01:45         75-27-4           Bromochoromethane         ND         ug/kg         10.3         1         05/07/19 18:40         05/08/19 01:45         75-27-4           Bromochorom         ND         ug/kg         10.3	2-Fluorobiphenyl (S)	65	%.	15-126	1	05/13/19 19:00	05/14/19 00:36	321-60-8	
Baco MSV 5035         Analytical Method: EPA 82608         Preparation Method: EPA 5035           Accoleon         ND         ug/kg         103         1         05/07/19         18:40         05/08/19         01:45         107-02-8           Acrolein         ND         ug/kg         51.3         1         05/07/19         18:40         05/08/19         01:45         107-02-8           Acrylonitrile         ND         ug/kg         51.3         1         05/07/19         18:40         05/08/19         01:45         71-43-2           Bromochoromethane         ND         ug/kg         51.1         1         05/07/19         18:40         05/08/19<01:45	p-Terphenyl-d14 (S)	62	%.	11-156	1	05/13/19 19:00	05/14/19 00:36	1718-51-0	
Acetone         ND         ug/kg         103         1         05/07/19         18:40         05/08/19         01:45         07-02-8           Acrolein         ND         ug/kg         51.3         1         05/07/19         18:40         05/08/19         01:45         107-02-8           Acrylonitrile         ND         ug/kg         51.3         1         05/07/19         18:40         05/08/19         01:45         17-13-1           Benzene         ND         ug/kg         5.1         1         05/07/19         18:40         05/08/19         01:45         71-43-2           Bromochloromethane         ND         ug/kg         5.1         1         05/07/19         18:40         05/08/19         01:45         74-97-5           Bromochloromethane         ND         ug/kg         5.1         1         05/07/19         18:40         05/08/19         01:45         75-27-4           Bromochromethane         ND         ug/kg         5.1         1         05/07/19         18:40         05/08/19         01:45         76-93-3           -Butylbenzene         ND         ug/kg         5.1         1         05/07/19         18:40         05/08/19         01:45         164-51-8 </td <td>8260 MSV 5035</td> <td>Analytical Met</td> <td>hod: EPA 826</td> <td>0B Preparation Me</td> <td>ethod: E</td> <td>EPA 5035</td> <td></td> <td></td> <td></td>	8260 MSV 5035	Analytical Met	hod: EPA 826	0B Preparation Me	ethod: E	EPA 5035			
Acrolein         ND         ug/kg         51.3         1         05/07/19         18:40         05/08/19         01:45         107-02-8           Acrylonitrile         ND         ug/kg         51.3         1         05/07/19         18:40         05/08/19         01:45         71-43-2           Benzene         ND         ug/kg         5.1         1         05/07/19         18:40         05/08/19         01:45         71-43-2           Bromochloromethane         ND         ug/kg         5.1         1         05/07/19         18:40         05/08/19         01:45         74-97-5           Bromochloromethane         ND         ug/kg         5.1         1         05/07/19         18:40         05/08/19         01:45         74-97-5           Bromochloromethane         ND         ug/kg         5.1         1         05/07/19         18:40         05/08/19         01:45         74-83-9           2-Butanone (MEK)         ND         ug/kg         1.0         05/07/19         18:40         05/08/19         01:45         13-98-8           sec-Butylbenzene         ND         ug/kg         5.1         1         05/07/19         18:40         05/08/19         01:45         13-98-8	Acetone	ND	ug/kg	103	1	05/07/19 18:40	05/08/19 01:45	67-64-1	
AcrylonitrileNDug/kg51.3105/07/1918:4005/08/19017-13-1BenzeneNDug/kg5.1105/07/1918:4005/08/190114571-43-2BromobenzeneNDug/kg5.1105/07/1918:4005/08/190114574-97-5BromochloromethaneNDug/kg5.1105/07/1918:4005/08/190114575-27-4BromochloromethaneNDug/kg5.1105/07/1918:4005/08/190114575-27-4BromoformNDug/kg5.1105/07/1918:4005/08/190114575-27-4BromoformNDug/kg10.3105/07/1918:4005/08/190114575-27-4BromoformNDug/kg10.3105/07/1918:4005/08/190114575-27-4BromoformNDug/kg10.3105/07/1918:4005/08/190114575-27-4BromoformNDug/kg5.1105/07/1918:4005/08/190114575-27-4BromoformNDug/kg5.1105/07/1918:4005/08/190114575-37-4Sec-ButylbenzeneNDug/kg5.1105/07/1918:4005/08/1901145135-98-8Carbon disulfideNDug/kg5.1105/07/1918:4005/08/190114556-23-5ChlorobenzeneND<	Acrolein	ND	ug/kg	51.3	1	05/07/19 18:40	05/08/19 01:45	107-02-8	
Benzene         ND         ug/kg         5.1         1         05/07/19 18:40         05/08/19 01:45         71-43-2           Bromobenzene         ND         ug/kg         5.1         1         05/07/19 18:40         05/08/19 01:45         74-97-5           Bromodichloromethane         ND         ug/kg         5.1         1         05/07/19 18:40         05/08/19 01:45         74-97-5           Bromodichloromethane         ND         ug/kg         5.1         1         05/07/19 18:40         05/08/19 01:45         75-27-4           Bromodichloromethane         ND         ug/kg         1.1         05/07/19 18:40         05/08/19 01:45         75-25-2           Bromomethane         ND         ug/kg         10.3         1         05/07/19 18:40         05/08/19 01:45         78-93-3           2-Butanone (MEK)         ND         ug/kg         5.1         1         05/07/19 18:40         05/08/19 01:45         78-93-3           n-Butylbenzene         ND         ug/kg         5.1         1         05/07/19 18:40         05/08/19 01:45         78-93-3           carbon disulfide         ND         ug/kg         5.1         1         05/07/19 18:40         05/08/19 01:45         78-93-3           Carbon disulfide	Acrylonitrile	ND	ua/ka	51.3	1	05/07/19 18:40	05/08/19 01:45	107-13-1	
Bromobenzene         ND         ug/kg         5.1         1         05/07/19         18:40         05/08/19         01:45         14-97-5           Bromochloromethane         ND         ug/kg         5.1         1         05/07/19         18:40         05/08/19         01:45         74-97-5           Bromodichloromethane         ND         ug/kg         5.1         1         05/07/19         18:40         05/08/19         01:45         75-27-4           Bromomethane         ND         ug/kg         5.1         1         05/07/19         18:40         05/08/19         01:45         75-25-2           Bromomethane         ND         ug/kg         10.3         1         05/07/19         18:40         05/08/19         01:45         74-93-3           2-Butanone (MEK)         ND         ug/kg         5.1         1         05/07/19         18:40         05/08/19         01:45         78-93-3           n-Butylbenzene         ND         ug/kg         5.1         1         05/07/19         18:40         05/08/19         01:45         135-98-8           tert-Butylbenzene         ND         ug/kg         5.1         1         05/07/19         18:40         05/08/19         01:45	Benzene	ND	ug/kg	5.1	1	05/07/19 18:40	05/08/19 01:45	71-43-2	
Bromochloromethane         ND         ug/kg         5.1         1         05/07/19 18:40         05/08/19 01:45         74-97-5           Bromodichloromethane         ND         ug/kg         5.1         1         05/07/19 18:40         05/08/19 01:45         75-27-4           Bromodichloromethane         ND         ug/kg         5.1         1         05/07/19 18:40         05/08/19 01:45         75-25-2           Bromomethane         ND         ug/kg         10.3         1         05/07/19 18:40         05/08/19 01:45         74-83-9           2-Butanone (MEK)         ND         ug/kg         103         1         05/07/19 18:40         05/08/19 01:45         74-83-9           2-Butanone (MEK)         ND         ug/kg         5.1         1         05/07/19 18:40         05/08/19 01:45         74-97-5           sec-Butylbenzene         ND         ug/kg         5.1         1         05/07/19 18:40         05/08/19 01:45         75-15-8           carbon disulfide         ND         ug/kg         5.1         1         05/07/19 18:40         05/08/19 01:45         75-15-0           Carbon tetrachloride         ND         ug/kg         5.1         1         05/07/19 18:40         05/08/19 01:45         75-07-3	Bromobenzene	ND	ug/kg	5.1	1	05/07/19 18:40	05/08/19 01:45	108-86-1	
Bromodichloromethane         ND         ug/kg         5.1         1         05/07/19         18:40         05/08/19         01:45         75-27-4           Bromoform         ND         ug/kg         5.1         1         05/07/19         18:40         05/08/19         01:45         75-25-2           Bromomethane         ND         ug/kg         10.3         1         05/07/19         18:40         05/08/19         01:45         74-83-9           2-Butanone (MEK)         ND         ug/kg         10.3         1         05/07/19         18:40         05/08/19         01:45         74-83-9           2-Butanone (MEK)         ND         ug/kg         10.3         1         05/07/19         18:40         05/08/19         01:45         14-51-8           sec-Butylbenzene         ND         ug/kg         5.1         1         05/07/19         18:40         05/08/19         01:45         75-16-0           Carbon disulfide         ND         ug/kg         5.1         1         05/07/19         18:40         05/08/19         01:45         56-23-5           Chlorobenzene         ND         ug/kg         5.1         1         05/07/19         18:40         05/08/19         01:45         75	Bromochloromethane	ND	ug/kg	5.1	1	05/07/19 18:40	05/08/19 01:45	74-97-5	
Bromoform         ND         ug/kg         5.1         1         05/07/19 18:40         05/08/19 01:45         75-25-2           Bromomethane         ND         ug/kg         10.3         1         05/07/19 18:40         05/08/19 01:45         74-83-9           2-Butanone (MEK)         ND         ug/kg         103         1         05/07/19 18:40         05/08/19 01:45         78-93-3           n-Butylbenzene         ND         ug/kg         5.1         1         05/07/19 18:40         05/08/19 01:45         135-98-8           sec-Butylbenzene         ND         ug/kg         5.1         1         05/07/19 18:40         05/08/19 01:45         98-06-6           Carbon disulfide         ND         ug/kg         5.1         1         05/07/19 18:40         05/08/19 01:45         75-15-0           Carbon disulfide         ND         ug/kg         5.1         1         05/07/19 18:40         05/08/19 01:45         75-15-0           Carbon tetrachloride         ND         ug/kg         5.1         1         05/07/19 18:40         05/08/19 01:45         75-00-3           Chlorobenzene         ND         ug/kg         5.1         1         05/07/19 18:40         05/08/19 01:45         74-87-3         v2	Bromodichloromethane	ND	ug/kg	5.1	1	05/07/19 18:40	05/08/19 01:45	75-27-4	
Bromomethane         ND         ug/kg         10.3         1         05/07/19 18:40         05/08/19 01:45         74-83-9           2-Butanone (MEK)         ND         ug/kg         103         1         05/07/19 18:40         05/08/19 01:45         78-93-3           n-Butylbenzene         ND         ug/kg         5.1         1         05/07/19 18:40         05/08/19 01:45         104-51-8           sec-Butylbenzene         ND         ug/kg         5.1         1         05/07/19 18:40         05/08/19 01:45         135-98-8           tert-Butylbenzene         ND         ug/kg         5.1         1         05/07/19 18:40         05/08/19 01:45         98-06-6           Carbon disulfide         ND         ug/kg         10.3         1         05/07/19 18:40         05/08/19 01:45         75-15-0           Carbon tetrachloride         ND         ug/kg         10.3         1         05/07/19 18:40         05/08/19 01:45         75-03-3           Chlorobenzene         ND         ug/kg         5.1         1         05/07/19 18:40         05/08/19 01:45         74-83-3         V2           Chloroform         ND         ug/kg         5.1         1         05/07/19 18:40         05/08/19 01:45         74-87-3         V2	Bromoform	ND	ug/kg	5.1	1	05/07/19 18:40	05/08/19 01:45	75-25-2	
2-Butanone (MEK)NDug/kg103105/07/1918:4005/08/1901:4578-93-3n-ButylbenzeneNDug/kg5.1105/07/1918:4005/08/1901:45104-51-8sec-ButylbenzeneNDug/kg5.1105/07/1918:4005/08/1901:45135-98-8tert-ButylbenzeneNDug/kg5.1105/07/1918:4005/08/1901:4598-06-6Carbon disulfideNDug/kg10.3105/07/1918:4005/08/1901:4575-15-0Carbon tetrachlorideNDug/kg5.1105/07/1918:4005/08/1901:4556-23-5ChlorobenzeneNDug/kg5.1105/07/1918:4005/08/1901:4575-00-3ChloroformNDug/kg5.1105/07/1918:4005/08/1901:4575-00-3ChloroformNDug/kg5.1105/07/1918:4005/08/1901:4575-00-3ChloroformNDug/kg5.1105/07/1918:4005/08/1901:4574-87-3v22-ChlorotolueneNDug/kg5.1105/07/1918:4005/08/1901:4574-87-3v22-ChlorotolueneNDug/kg5.1105/07/1918:4005/08/1901:4595-49-84-ChlorotolueneNDug/kg5.1105/07/1918:4005/08/19 <t< td=""><td>Bromomethane</td><td>ND</td><td>ug/kg</td><td>10.3</td><td>1</td><td>05/07/19 18:40</td><td>05/08/19 01:45</td><td>74-83-9</td><td></td></t<>	Bromomethane	ND	ug/kg	10.3	1	05/07/19 18:40	05/08/19 01:45	74-83-9	
n-ButylbenzeneNDug/kg5.1105/07/1918:4005/08/1901:45104-51-8sec-ButylbenzeneNDug/kg5.1105/07/1918:4005/08/1901:45135-98-8tert-ButylbenzeneNDug/kg5.1105/07/1918:4005/08/1901:4598-06-6Carbon disulfideNDug/kg10.3105/07/1918:4005/08/1901:4575-15-0Carbon tetrachlorideNDug/kg5.1105/07/1918:4005/08/1901:4556-23-5ChlorobenzeneNDug/kg5.1105/07/1918:4005/08/1901:45108-90-7ChlorotehaneNDug/kg5.1105/07/1918:4005/08/1901:4575-00-3ChloroformNDug/kg5.1105/07/1918:4005/08/1901:4576-66-3ChlorotolueneNDug/kg5.1105/07/1918:4005/08/1901:4574-87-3v22-ChlorotolueneNDug/kg5.1105/07/1918:4005/08/1901:4574-87-3v22-ChlorotolueneNDug/kg5.1105/07/1918:4005/08/1901:4595-49-84-ChlorotolueneNDug/kg5.1105/07/1918:4005/08/1901:4596-43-41,2-Dibromo-3-chloropropaneNDug/kg5.1105/07/1918:40 <t< td=""><td>2-Butanone (MEK)</td><td>ND</td><td>ug/kg</td><td>103</td><td>1</td><td>05/07/19 18:40</td><td>05/08/19 01:45</td><td>78-93-3</td><td></td></t<>	2-Butanone (MEK)	ND	ug/kg	103	1	05/07/19 18:40	05/08/19 01:45	78-93-3	
sec-Butylbenzene         ND         ug/kg         5.1         1         05/07/19         18:40         05/08/19         01:45         135-98-8           tert-Butylbenzene         ND         ug/kg         5.1         1         05/07/19         18:40         05/08/19         01:45         98-06-6           Carbon disulfide         ND         ug/kg         10.3         1         05/07/19         18:40         05/08/19         01:45         75-15-0           Carbon tetrachloride         ND         ug/kg         5.1         1         05/07/19         18:40         05/08/19         01:45         56-23-5           Chlorobenzene         ND         ug/kg         5.1         1         05/07/19         18:40         05/08/19         01:45         56-23-5           Chlorobenzene         ND         ug/kg         5.1         1         05/07/19         18:40         05/08/19         01:45         75-00-3           Chloroform         ND         ug/kg         5.1         1         05/07/19         18:40         05/08/19         01:45         76-66-3           Chloroform         ND         ug/kg         5.1         1         05/07/19         18:40         05/08/19         01:45         74-87-	n-Butylbenzene	ND	ug/kg	5.1	1	05/07/19 18:40	05/08/19 01:45	104-51-8	
tert-BurylbenzeneNDug/kg5.1105/07/1918:4005/08/1901:4598-06-6Carbon disulfideNDug/kg10.3105/07/1918:4005/08/1901:4575-15-0Carbon tetrachlorideNDug/kg5.1105/07/1918:4005/08/1901:4556-23-5ChlorobenzeneNDug/kg10.3105/07/1918:4005/08/1901:45108-90-7ChlorobethaneNDug/kg5.1105/07/1918:4005/08/1901:4575-00-3ChloroformNDug/kg5.1105/07/1918:4005/08/1901:4567-66-3ChlorobethaneNDug/kg5.1105/07/1918:4005/08/1901:4574-87-3v22-ChlorotolueneNDug/kg5.1105/07/1918:4005/08/1901:4574-87-3v22-ChlorotolueneNDug/kg5.1105/07/1918:4005/08/1901:4595-49-84-ChlorotolueneNDug/kg5.1105/07/1918:4005/08/1901:45106-43-41,2-Dibromo-3-chloropropaneNDug/kg5.1105/07/1918:4005/08/1901:4596-12-8	sec-Butylbenzene	ND	ug/kg	5.1	1	05/07/19 18:40	05/08/19 01:45	135-98-8	
Carbon disulfide         ND         ug/kg         10.3         1         05/07/19         18:40         05/08/19         01:45         75-15-0           Carbon tetrachloride         ND         ug/kg         5.1         1         05/07/19         18:40         05/08/19         01:45         56-23-5           Chlorobenzene         ND         ug/kg         10.3         1         05/07/19         18:40         05/08/19         01:45         75-10-0           Chlorobenzene         ND         ug/kg         10.3         1         05/07/19         18:40         05/08/19         01:45         75-00-3           Chlorobenzene         ND         ug/kg         5.1         1         05/07/19         18:40         05/08/19         01:45         75-00-3           Chloroform         ND         ug/kg         5.1         1         05/07/19         18:40         05/08/19         01:45         74-87-3         v2           2-Chlorotoluene         ND         ug/kg         5.1         1         05/07/19         18:40         05/08/19         01:45         74-87-3         v2           2-Chlorotoluene         ND         ug/kg         5.1         1         05/07/19         18:40         05/08/19	tert-Butylbenzene	ND	ug/kg	5.1	1	05/07/19 18:40	05/08/19 01:45	98-06-6	
Carbon tetrachloride         ND         ug/kg         5.1         1         05/07/19         18:40         05/08/19         01:45         56-23-5           Chlorobenzene         ND         ug/kg         10.3         1         05/07/19         18:40         05/08/19         01:45         108-90-7           Chlorobenzene         ND         ug/kg         5.1         1         05/07/19         18:40         05/08/19         01:45         75-00-3           Chloroform         ND         ug/kg         5.1         1         05/07/19         18:40         05/08/19         01:45         75-00-3           Chloroform         ND         ug/kg         5.1         1         05/07/19         18:40         05/08/19         01:45         67-66-3           Chloromethane         ND         ug/kg         5.1         1         05/07/19         18:40         05/08/19         01:45         74-87-3         v2           2-Chlorotoluene         ND         ug/kg         5.1         1         05/07/19         18:40         05/08/19         01:45         95-49-8           4-Chlorotoluene         ND         ug/kg         5.1         1         05/07/19         18:40         05/08/19         01:45	Carbon disulfide	ND	ug/kg	10.3	1	05/07/19 18:40	05/08/19 01:45	75-15-0	
Chlorobenzene         ND         ug/kg         10.3         1         05/07/19         18:40         05/08/19         01:45         108-90-7           Chloroethane         ND         ug/kg         5.1         1         05/07/19         18:40         05/08/19         01:45         75-00-3           Chloroform         ND         ug/kg         5.1         1         05/07/19         18:40         05/08/19         01:45         75-00-3           Chloroform         ND         ug/kg         5.1         1         05/07/19         18:40         05/08/19         01:45         67-66-3           Chloromethane         ND         ug/kg         10.3         1         05/07/19         18:40         05/08/19         01:45         74-87-3         v2           2-Chlorotoluene         ND         ug/kg         5.1         1         05/07/19         18:40         05/08/19         01:45         95-49-8           4-Chlorotoluene         ND         ug/kg         5.1         1         05/07/19         18:40         05/08/19         01:45         106-43-4           1,2-Dibromo-3-chloropropane         ND         ug/kg         5.1         1         05/07/19         18:40         05/08/19         01:45 </td <td>Carbon tetrachloride</td> <td>ND</td> <td>ug/kg</td> <td>5.1</td> <td>1</td> <td>05/07/19 18:40</td> <td>05/08/19 01:45</td> <td>56-23-5</td> <td></td>	Carbon tetrachloride	ND	ug/kg	5.1	1	05/07/19 18:40	05/08/19 01:45	56-23-5	
Chloroethane         ND         ug/kg         5.1         1         05/07/19         18:40         05/08/19         01:45         75-00-3           Chloroform         ND         ug/kg         5.1         1         05/07/19         18:40         05/08/19         01:45         67-66-3           Chloromethane         ND         ug/kg         10.3         1         05/07/19         18:40         05/08/19         01:45         74-87-3         v2           2-Chlorotoluene         ND         ug/kg         5.1         1         05/07/19         18:40         05/08/19         01:45         74-87-3         v2           2-Chlorotoluene         ND         ug/kg         5.1         1         05/07/19         18:40         05/08/19         01:45         95-49-8           4-Chlorotoluene         ND         ug/kg         5.1         1         05/07/19         18:40         05/08/19         01:45         106-43-4           1,2-Dibromo-3-chloropropane         ND         ug/kg         5.1         1         05/07/19         18:40         05/08/19         01:45         96-12-8	Chlorobenzene	ND	ug/kg	10.3	1	05/07/19 18:40	05/08/19 01:45	108-90-7	
Chloroform         ND         ug/kg         5.1         1         05/07/19         18:40         05/08/19         01:45         67-66-3           Chloromethane         ND         ug/kg         10.3         1         05/07/19         18:40         05/08/19         01:45         74-87-3         v2           2-Chlorotoluene         ND         ug/kg         5.1         1         05/07/19         18:40         05/08/19         01:45         95-49-8           4-Chlorotoluene         ND         ug/kg         5.1         1         05/07/19         18:40         05/08/19         01:45         106-43-4           1,2-Dibromo-3-chloropropane         ND         ug/kg         5.1         1         05/07/19         18:40         05/08/19         01:45         96-12-8	Chloroethane	ND	ug/ka	5.1	1	05/07/19 18:40	05/08/19 01:45	75-00-3	
Chloromethane         ND         ug/kg         10.3         1         05/07/19         18:40         05/08/19         01:45         74-87-3         v2           2-Chlorotoluene         ND         ug/kg         5.1         1         05/07/19         18:40         05/08/19         01:45         95-49-8           4-Chlorotoluene         ND         ug/kg         5.1         1         05/07/19         18:40         05/08/19         01:45         95-49-8           1,2-Dibromo-3-chloropropane         ND         ug/kg         5.1         1         05/07/19         18:40         05/08/19         01:45         96-12-8	Chloroform	ND	ug/ka	5.1	1	05/07/19 18:40	05/08/19 01:45	67-66-3	
2-Chlorotoluene         ND         ug/kg         5.1         1         05/07/19         18:40         05/08/19         01:45         95-49-8           4-Chlorotoluene         ND         ug/kg         5.1         1         05/07/19         18:40         05/08/19         01:45         106-43-4           1,2-Dibromo-3-chloropropane         ND         ug/kg         5.1         1         05/07/19         18:40         05/08/19         01:45         96-12-8	Chloromethane	ND	ug/ka	10.3	1	05/07/19 18:40	05/08/19 01:45	74-87-3	v2
4-Chlorotoluene         ND         ug/kg         5.1         1         05/07/19         18:40         05/08/19         01:45         106-43-4           1,2-Dibromo-3-chloropropane         ND         ug/kg         5.1         1         05/07/19         18:40         05/08/19         01:45         96-12-8	2-Chlorotoluene	ND	ug/kg	5.1	1	05/07/19 18:40	05/08/19 01:45	95-49-8	
1,2-Dibromo-3-chloropropane ND ug/kg 5.1 1 05/07/19 18:40 05/08/19 01:45 96-12-8	4-Chlorotoluene	ND	ug/kg	5.1	1	05/07/19 18:40	05/08/19 01:45	106-43-4	
	1,2-Dibromo-3-chloropropane	ND	ug/kg	5.1	1	05/07/19 18:40	05/08/19 01:45	96-12-8	



Project: 825 Warner Street 19-064

Pace Project No.: 2618256

Sample: B1-5-10'	Lab ID: 261	8256001	Collected: 05/07/1	9 08:2	7 Received: 05	07/19 13:46 N	latrix: Solid	
Results reported on a "dry weigh	t" basis and are adj	iusted for pe	rcent moisture, sa	mple s	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV 5035	Analytical Mether	nod: EPA 826	0B Preparation Me	thod: E	EPA 5035			
Dibromochloromethane	ND	ug/kg	5.1	1	05/07/19 18:40	05/08/19 01:45	124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/kg	5.1	1	05/07/19 18:40	05/08/19 01:45	106-93-4	
Dibromomethane	ND	ug/kg	5.1	1	05/07/19 18:40	05/08/19 01:45	74-95-3	
1,2-Dichlorobenzene	ND	ug/kg	5.1	1	05/07/19 18:40	05/08/19 01:45	95-50-1	
1,3-Dichlorobenzene	ND	ug/kg	5.1	1	05/07/19 18:40	05/08/19 01:45	541-73-1	
1,4-Dichlorobenzene	ND	ug/kg	5.1	1	05/07/19 18:40	05/08/19 01:45	106-46-7	
Dichlorodifluoromethane	ND	ug/kg	10.3	1	05/07/19 18:40	05/08/19 01:45	75-71-8	
1,1-Dichloroethane	ND	ug/kg	5.1	1	05/07/19 18:40	05/08/19 01:45	75-34-3	
1,2-Dichloroethane	ND	ug/kg	5.1	1	05/07/19 18:40	05/08/19 01:45	107-06-2	
1,1-Dichloroethene	ND	ug/kg	5.1	1	05/07/19 18:40	05/08/19 01:45	75-35-4	
cis-1,2-Dichloroethene	ND	ug/kg	5.1	1	05/07/19 18:40	05/08/19 01:45	156-59-2	
trans-1,2-Dichloroethene	ND	ug/kg	5.1	1	05/07/19 18:40	05/08/19 01:45	156-60-5	
1,2-Dichloropropane	ND	ug/kg	5.1	1	05/07/19 18:40	05/08/19 01:45	78-87-5	
1.3-Dichloropropane	ND	ua/ka	5.1	1	05/07/19 18:40	05/08/19 01:45	142-28-9	
2,2-Dichloropropane	ND	ug/kg	5.1	1	05/07/19 18:40	05/08/19 01:45	594-20-7	
1,1-Dichloropropene	ND	ug/kg	5.1	1	05/07/19 18:40	05/08/19 01:45	563-58-6	
cis-1.3-Dichloropropene	ND	ua/ka	5.1	1	05/07/19 18:40	05/08/19 01:45	10061-01-5	
trans-1.3-Dichloropropene	ND	ua/ka	5.1	1	05/07/19 18:40	05/08/19 01:45	10061-02-6	
Diisopropyl ether	ND	ua/ka	5.1	1	05/07/19 18:40	05/08/19 01:45	108-20-3	
Ethylbenzene	ND	ua/ka	5.1	1	05/07/19 18:40	05/08/19 01:45	100-41-4	
2-Hexanone	ND	ua/ka	51.3	1	05/07/19 18:40	05/08/19 01:45	591-78-6	
Isopropylbenzene (Cumene)	ND	ua/ka	5.1	1	05/07/19 18:40	05/08/19 01:45	98-82-8	
p-Isopropyltoluene	ND	ua/ka	5.1	1	05/07/19 18:40	05/08/19 01:45	99-87-6	
Methylene Chloride	ND	ua/ka	10.3	1	05/07/19 18:40	05/08/19 01:45	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ua/ka	51.3	1	05/07/19 18:40	05/08/19 01:45	108-10-1	
Methyl-tert-butyl ether	ND	ua/ka	5.1	1	05/07/19 18:40	05/08/19 01:45	1634-04-4	
Naphthalene	ND	ua/ka	5.1	1	05/07/19 18:40	05/08/19 01:45	91-20-3	
n-Propylbenzene	ND	ua/ka	5.1	1	05/07/19 18:40	05/08/19 01:45	103-65-1	
Styrene	ND	ua/ka	5.1	1	05/07/19 18:40	05/08/19 01:45	100-42-5	
1.1.1.2-Tetrachloroethane	ND	ua/ka	5.1	1	05/07/19 18:40	05/08/19 01:45	630-20-6	M1
1.1.2.2-Tetrachloroethane	ND	ua/ka	5.1	1	05/07/19 18:40	05/08/19 01:45	79-34-5	
Tetrachloroethene	ND	ua/ka	5.1	1	05/07/19 18:40	05/08/19 01:45	127-18-4	
Toluene	ND	ua/ka	5.1	1	05/07/19 18:40	05/08/19 01:45	108-88-3	
1.2.3-Trichlorobenzene	ND	ua/ka	5.1	1	05/07/19 18:40	05/08/19 01:45	87-61-6	
1.2.4-Trichlorobenzene	ND	ua/ka	5.1	1	05/07/19 18:40	05/08/19 01:45	120-82-1	
1.1.1-Trichloroethane	ND	ua/ka	5.1	1	05/07/19 18:40	05/08/19 01:45	71-55-6	
1.1.2-Trichloroethane	ND	ua/ka	5.1	1	05/07/19 18:40	05/08/19 01:45	79-00-5	
Trichloroethene	ND	ua/ka	5.1	1	05/07/19 18:40	05/08/19 01.45	79-01-6	
Trichlorofluoromethane	ND	ug/kg	5.1	1	05/07/19 18:40	05/08/19 01:45	75-69-4	
1 2 3-Trichloropropane	ND	ug/kg	5.1	1	05/07/19 18:40	05/08/19 01:45	96-18-4	
1 2 4-Trimethylbenzene	ND	ug/kg	5.1	1	05/07/19 18:40	05/08/19 01:45	95-63-6	
1.3.5-Trimethylbenzene	ND	ug/ka	5.1	1	05/07/19 18:40	05/08/19 01.45	108-67-8	
Vinvl acetate	ND	ua/ka	10.3	1	05/07/19 18:40	05/08/19 01:45	108-05-4	
Vinvl chloride	ND	ua/ka	10.3	1	05/07/19 18:40	05/08/19 01:45	75-01-4	
Xvlene (Total)	ND	ug/ka	10.3	1	05/07/19 18:40	05/08/19 01:45	1330-20-7	MS
m&p-Xvlene	ND	ug/ka	5.1	1	05/07/19 18:40	05/08/19 01.45	179601-23-1	M1
			0.1	•				



Project: 825 Warner Street 19-064

Pace Project No.: 2618256

Sample: B1-5-10'	Lab ID: 261	<b>B256001</b> Co	llected: 05/07/1	9 08:2	7 Received: 05	/07/19 13:46 N	latrix: Solid	
Results reported on a "dry weight	t" basis and are adj	usted for perce	ent moisture, sa	mple s	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV 5035	Analytical Meth	nod: EPA 8260B	Preparation Me	thod: E	EPA 5035			
o-Xylene	ND	ug/kg	5.1	1	05/07/19 18:40	05/08/19 01:45	95-47-6	
Surrogates								
Dibromofluoromethane (S)	106	%.	73-114	1	05/07/19 18:40	05/08/19 01:45	1868-53-7	
Toluene-d8 (S)	104	%.	85-109	1	05/07/19 18:40	05/08/19 01:45	2037-26-5	
4-Bromofluorobenzene (S)	114	%.	77-124	1	05/07/19 18:40	05/08/19 01:45	460-00-4	
1,2-Dichloroethane-d4 (S)	110	%.	69-133	1	05/07/19 18:40	05/08/19 01:45	17060-07-0	
Percent Moisture	Analytical Meth	nod: Pace SOP a	¥204					
Percent Moisture	12.5	%	0.10	1		05/13/19 10:03		



Project: 825 Warner Street 19-064

Pace Project No.: 2618256

Sample: B2-7-10'	Lab ID: 261	8256002	Collected: 05/07/1	9 09:3	0 Received: 05	5/07/19 13:46 N	latrix: Solid	
Results reported on a "dry we	ight" basis and are adj	iusted for pe	rcent moisture, sa	mple s	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010D MET ICP	Analytical Met	hod: EPA 601	0D Preparation Me	ethod: E	EPA 3050B			
Arsenic	27.9	mg/kg	3.6	1	05/08/19 12:00	05/09/19 08:05	7440-38-2	
Barium	276	mg/kg	1.2	1	05/08/19 12:00	05/09/19 08:05	7440-39-3	M1,R1
Cadmium	28.9	mg/kg	1.2	1	05/08/19 12:00	05/09/19 08:05	7440-43-9	
Chromium	31.9	mg/kg	1.2	1	05/08/19 12:00	05/09/19 08:05	7440-47-3	M1,R1
Lead	5880	mg/kg	3.0	1	05/08/19 12:00	05/09/19 08:05	7439-92-1	M1,R1
Selenium	ND	mg/kg	4.8	1	05/08/19 12:00	05/09/19 08:05	7782-49-2	
Silver	ND	mg/kg	1.2	1	05/08/19 12:00	05/09/19 08:05	7440-22-4	
7471 Mercury	Analytical Mether	hod: EPA 747	1B Preparation Me	ethod: E	EPA 7471B			
Mercury	ND	mg/kg	0.28	1	05/08/19 16:01	05/08/19 22:19	7439-97-6	
8270D MSSV PAH	Analytical Met	hod: EPA 827	0D Preparation Me	ethod: E	EPA 3546			
Acenaphthene	ND	ug/kg	4050	10	05/08/19 12:15	05/08/19 23:14	83-32-9	M6
Acenaphthylene	ND	ug/kg	4050	10	05/08/19 12:15	05/08/19 23:14	208-96-8	M6
Anthracene	ND	ug/kg	4050	10	05/08/19 12:15	05/08/19 23:14	120-12-7	M6
Benzo(a)anthracene	ND	ug/kg	4050	10	05/08/19 12:15	05/08/19 23:14	56-55-3	M6
Benzo(a)pyrene	ND	ug/kg	4050	10	05/08/19 12:15	05/08/19 23:14	50-32-8	IU,M6
Benzo(b)fluoranthene	ND	ug/kg	4050	10	05/08/19 12:15	05/08/19 23:14	205-99-2	IU,M6
Benzo(g,h,i)perylene	ND	ug/kg	4050	10	05/08/19 12:15	05/08/19 23:14	191-24-2	IU,M6
Benzo(k)fluoranthene	ND	ug/kg	4050	10	05/08/19 12:15	05/08/19 23:14	207-08-9	IU,M6
Chrysene	ND	ug/kg	4050	10	05/08/19 12:15	05/08/19 23:14	218-01-9	M6
Dibenz(a,h)anthracene	ND	ug/kg	4050	10	05/08/19 12:15	05/08/19 23:14	53-70-3	IU,M6
Fluoranthene	6570	ug/kg	4050	10	05/08/19 12:15	05/08/19 23:14	206-44-0	M6
Fluorene	ND	ug/kg	4050	10	05/08/19 12:15	05/08/19 23:14	86-73-7	M6
Indeno(1,2,3-cd)pyrene	ND	ug/kg	4050	10	05/08/19 12:15	05/08/19 23:14	193-39-5	IU,M6
1-Methylnaphthalene	ND	ug/kg	4050	10	05/08/19 12:15	05/08/19 23:14	90-12-0	M6
2-Methylnaphthalene	ND	ug/kg	4050	10	05/08/19 12:15	05/08/19 23:14	91-57-6	M6
Naphthalene	ND	ug/kg	4050	10	05/08/19 12:15	05/08/19 23:14	91-20-3	M6
Phenanthrene	6050	ug/kg	4050	10	05/08/19 12:15	05/08/19 23:14	85-01-8	M6
Pyrene Surrogates	5580	ug/kg	4050	10	05/08/19 12:15	05/08/19 23:14	129-00-0	M6
Nitrobenzene-d5 (S)	52	%.	11-106	10	05/08/19 12:15	05/08/19 23:14	4165-60-0	
2-Fluorobiphenyl (S)	80	%.	15-126	10	05/08/19 12:15	05/08/19 23:14	321-60-8	
p-Terphenyl-d14 (S)	102	%.	11-156	10	05/08/19 12:15	05/08/19 23:14	1718-51-0	
8260 MSV 5035	Analytical Met	hod: EPA 826	0B Preparation Me	ethod: E	EPA 5035			
Acetone	ND	ug/kg	142	1	05/07/19 18:40	05/08/19 02:09	67-64-1	
Acrolein	ND	ug/kg	70.8	1	05/07/19 18:40	05/08/19 02:09	107-02-8	
Acrylonitrile	ND	ug/kg	70.8	1	05/07/19 18:40	05/08/19 02:09	107-13-1	
Benzene	ND	ug/kg	7.1	1	05/07/19 18:40	05/08/19 02:09	71-43-2	
Bromobenzene	ND	ug/kg	7.1	1	05/07/19 18:40	05/08/19 02:09	108-86-1	
Bromochloromethane	ND	ug/kg	7.1	1	05/07/19 18:40	05/08/19 02:09	74-97-5	
Bromodichloromethane	ND	ug/kg	7.1	1	05/07/19 18:40	05/08/19 02:09	75-27-4	
Bromoform	ND	ug/kg	7.1	1	05/07/19 18:40	05/08/19 02:09	75-25-2	
Bromomethane	ND	ug/kg	14.2	1	05/07/19 18:40	05/08/19 02:09	74-83-9	

#### **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.



Project: 825 Warner Street 19-064

Pace Project No.: 2618256

Sample: B2-7-10'	Lab ID: 261	8256002 Co	ollected: 05/07/1	9 09:3	0 Received: 05	07/19 13:46 N	latrix: Solid	
Results reported on a "dry weigh	t" basis and are adj	iusted for perce	ent moisture, sa	mple s	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV 5035	Analytical Met	nod: EPA 8260B	Preparation Me	ethod: E	EPA 5035			
2-Butanone (MEK)	ND	ug/kg	142	1	05/07/19 18:40	05/08/19 02:09	78-93-3	
n-Butylbenzene	ND	ug/kg	7.1	1	05/07/19 18:40	05/08/19 02:09	104-51-8	
sec-Butylbenzene	ND	ug/kg	7.1	1	05/07/19 18:40	05/08/19 02:09	135-98-8	
tert-Butylbenzene	ND	ug/kg	7.1	1	05/07/19 18:40	05/08/19 02:09	98-06-6	
Carbon disulfide	ND	ug/kg	14.2	1	05/07/19 18:40	05/08/19 02:09	75-15-0	
Carbon tetrachloride	ND	ug/kg	7.1	1	05/07/19 18:40	05/08/19 02:09	56-23-5	
Chlorobenzene	ND	ug/kg	14.2	1	05/07/19 18:40	05/08/19 02:09	108-90-7	
Chloroethane	ND	ug/kg	7.1	1	05/07/19 18:40	05/08/19 02:09	75-00-3	
Chloroform	ND	ua/ka	7.1	1	05/07/19 18:40	05/08/19 02:09	67-66-3	
Chloromethane	ND	ug/kg	14.2	1	05/07/19 18:40	05/08/19 02:09	74-87-3	v2
2-Chlorotoluene	ND	ug/kg	7.1	1	05/07/19 18:40	05/08/19 02:09	95-49-8	
4-Chlorotoluene	ND	ua/ka	7.1	1	05/07/19 18:40	05/08/19 02:09	106-43-4	
1.2-Dibromo-3-chloropropane	ND	ua/ka	7.1	1	05/07/19 18:40	05/08/19 02:09	96-12-8	
Dibromochloromethane	ND	ua/ka	7.1	1	05/07/19 18:40	05/08/19 02:09	124-48-1	
1.2-Dibromoethane (EDB)	ND	ua/ka	7.1	1	05/07/19 18:40	05/08/19 02:09	106-93-4	
Dibromomethane	ND	ua/ka	7.1	1	05/07/19 18:40	05/08/19 02:09	74-95-3	
1.2-Dichlorobenzene	ND	ua/ka	7.1	1	05/07/19 18:40	05/08/19 02:09	95-50-1	
1 3-Dichlorobenzene	ND	ua/ka	7 1	1	05/07/19 18:40	05/08/19 02:09	541-73-1	
1 4-Dichlorobenzene	ND	ua/ka	7 1	1	05/07/19 18:40	05/08/19 02:09	106-46-7	
Dichlorodifluoromethane	ND	ua/ka	14.2	1	05/07/19 18:40	05/08/19 02:09	75-71-8	
1 1-Dichloroethane	ND	ua/ka	7 1	1	05/07/19 18:40	05/08/19 02:09	75-34-3	
1 2-Dichloroethane	ND	ug/kg	7.1	1	05/07/19 18:40	05/08/19 02:09	107-06-2	
1 1-Dichloroethene	ND	ua/ka	7 1	1	05/07/19 18:40	05/08/19 02:09	75-35-4	
cis-1 2-Dichloroethene	ND	ug/kg	7.1	1	05/07/19 18:40	05/08/19 02:09	156-59-2	
trans-1 2-Dichloroethene	ND	ug/kg	7.1	1	05/07/19 18:40	05/08/19 02:09	156-60-5	
1 2-Dichloropropane	ND	ug/kg	7.1	1	05/07/19 18:40	05/08/19 02:09	78-87-5	
1 3-Dichloropropane	ND	ug/kg	7.1	1	05/07/19 18:40	05/08/19 02:09	142-28-9	
2 2-Dichloropropane	ND	ug/kg	7.1	1	05/07/19 18:40	05/08/19 02:09	594-20-7	
1 1-Dichloropropene	ND	ug/kg	7.1	1	05/07/19 18:40	05/08/19 02:09	563-58-6	
cis-1 3-Dichloropropene	ND	ug/kg	7.1	1	05/07/19 18:40	05/08/19 02:09	10061-01-5	
trans_1_3_Dichloropropene	ND	ug/kg	7.1	1	05/07/19 18:40	05/08/19 02:09	10061-02-6	
	ND	ug/kg	7.1	1	05/07/19 18:40	05/08/19 02:09	108-20-3	
Ethylbenzene	ND	ug/kg	7.1	1	05/07/19 18:40	05/08/19 02:09	100-41-4	
2-Hevanone	ND	ug/kg	70.8	1	05/07/19 18:40	05/08/19 02:09	591-78-6	
Isopropylbenzene (Cumene)	ND	ug/kg	7 1	1	05/07/19 18:40	05/08/19 02:09	98-82-8	
n-Isopropyltoluene	ND	ug/kg	7.1	1	05/07/19 18:40	05/08/19 02:09	99-87-6	
Methylene Chloride		ug/kg	1/1 2	1	05/07/10 18:40	05/08/10 02:00	75-00-2	
4-Methyl-2-pentanone (MIBK)		ug/kg	70.8	1	05/07/19 18:40	05/08/19 02:09	108-10-1	
Mothyl tort butyl other		ug/kg	70.0	1	05/07/10 18:40	05/08/10 02:00	1634 04 4	
Nanhthalene	ND 86	ug/kg	7.1	1	05/07/19 18:40	05/08/19 02:09	01_20_3	
n-Pronvlbenzene		ug/kg	7.1	1	05/07/10 18.40	05/08/10 02:09	103-65-1	
Styrono		ug/kg	7.1	1	05/07/10 19:40	05/08/10 02:09	100-42 5	
1 1 1 2-Tetrachloroothana		ug/kg	7.1	1	05/07/10 19:40	05/08/10 02:09	630-20 6	
		ug/kg	7.1	1	05/07/19 10:40	05/00/19 02.09	70 34 5	
Tetrachloroethene		ug/kg	7.1	1	05/07/10 19:40	05/08/10 02:09	127-19 1	
		ug/kg	1.1 7 4	1	05/07/10 10:40	05/00/19 02.09	100 00 0	
roiuene	ND	ug/kg	7.1	1	05/07/19 18:40	00/08/19 02:09	100-00-3	



Project: 825 Warner Street 19-064

Pace Project No.: 2618256

Sample: B2-7-10'	Lab ID: 2618256002		Collected: 05/07/1	9 09:3	0 Received: 05	5/07/19 13:46 N	atrix: Solid			
Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.										
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual		
8260 MSV 5035	Analytical Meth	nod: EPA 82	60B Preparation Me	ethod: E	EPA 5035					
1,2,3-Trichlorobenzene	ND	ug/kg	7.1	1	05/07/19 18:40	05/08/19 02:09	87-61-6			
1,2,4-Trichlorobenzene	ND	ug/kg	7.1	1	05/07/19 18:40	05/08/19 02:09	120-82-1			
1,1,1-Trichloroethane	ND	ug/kg	7.1	1	05/07/19 18:40	05/08/19 02:09	71-55-6			
1,1,2-Trichloroethane	ND	ug/kg	7.1	1	05/07/19 18:40	05/08/19 02:09	79-00-5			
Trichloroethene	ND	ug/kg	7.1	1	05/07/19 18:40	05/08/19 02:09	79-01-6			
Trichlorofluoromethane	ND	ug/kg	7.1	1	05/07/19 18:40	05/08/19 02:09	75-69-4			
1,2,3-Trichloropropane	ND	ug/kg	7.1	1	05/07/19 18:40	05/08/19 02:09	96-18-4			
1,2,4-Trimethylbenzene	ND	ug/kg	7.1	1	05/07/19 18:40	05/08/19 02:09	95-63-6			
1,3,5-Trimethylbenzene	ND	ug/kg	7.1	1	05/07/19 18:40	05/08/19 02:09	108-67-8			
Vinyl acetate	ND	ug/kg	14.2	1	05/07/19 18:40	05/08/19 02:09	108-05-4			
Vinyl chloride	ND	ug/kg	14.2	1	05/07/19 18:40	05/08/19 02:09	75-01-4			
Xylene (Total)	ND	ug/kg	14.2	1	05/07/19 18:40	05/08/19 02:09	1330-20-7			
m&p-Xylene	ND	ug/kg	7.1	1	05/07/19 18:40	05/08/19 02:09	179601-23-1			
o-Xylene	ND	ug/kg	7.1	1	05/07/19 18:40	05/08/19 02:09	95-47-6			
Surrogates										
Dibromofluoromethane (S)	107	%.	73-114	1	05/07/19 18:40	05/08/19 02:09	1868-53-7			
Toluene-d8 (S)	104	%.	85-109	1	05/07/19 18:40	05/08/19 02:09	2037-26-5			
4-Bromofluorobenzene (S)	118	%.	77-124	1	05/07/19 18:40	05/08/19 02:09	460-00-4			
1,2-Dichloroethane-d4 (S)	116	%.	69-133	1	05/07/19 18:40	05/08/19 02:09	17060-07-0			
Percent Moisture	Analytical Method: Pace SOP #204									
Percent Moisture	18.8	%	0.10	1		05/13/19 10:03				



Project: 825 Warner Street 19-064

Pace Project No.: 2618256

Sample: B3-2-3'	Lab ID: 261	8256003	Collected: 05/07/1	9 10:44	Received: 05	07/19 13:46 N	latrix: Solid	
Results reported on a "dry wei	ght" basis and are adj	iusted for pe	ercent moisture, sa	mple s	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010D MET ICP	Analytical Meth	nod: EPA 601	10D Preparation Me	ethod: E	PA 3050B			
Arsenic	15.4	mg/kg	3.5	1	05/08/19 12:00	05/09/19 08:26	7440-38-2	
Barium	218	mg/kg	1.2	1	05/08/19 12:00	05/09/19 08:26	7440-39-3	
Cadmium	7.3	mg/kg	1.2	1	05/08/19 12:00	05/09/19 08:26	7440-43-9	
Chromium	42.6	mg/kg	1.2	1	05/08/19 12:00	05/09/19 08:26	7440-47-3	
Lead	109	mg/kg	2.9	1	05/08/19 12:00	05/09/19 08:26	7439-92-1	
Selenium	ND	mg/kg	4.6	1	05/08/19 12:00	05/09/19 08:26	7782-49-2	
Silver	ND	mg/kg	1.2	1	05/08/19 12:00	05/09/19 08:26	7440-22-4	
7471 Mercury	Analytical Method: EPA 7471B Preparation Method: EPA 7471B							
Mercury	ND	mg/kg	0.28	1	05/08/19 16:01	05/08/19 22:22	7439-97-6	
Percent Moisture	Analytical Method: Pace SOP #204							
Percent Moisture	17.1	%	0.10	1		05/13/19 10:04		



#### Project: 825 Warner Street 19-064

#### Pace Project No.: 2618256

Sample: B1	Lab ID: 2618256004		Collected: 05/07/19 08:55		Received: 05/0	7/19 13:46 N	atrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260B MSV	Analytical Method: EPA 8260B							
Acetone	ND	ug/L	25.0	1	C	5/14/19 00:02	67-64-1	M1,R1
Benzene	ND	ug/L	2.0	1	C	5/14/19 00:02	71-43-2	M1,R1
Bromobenzene	ND	ug/L	1.0	1	C	5/14/19 00:02	108-86-1	M1,R1
Bromochloromethane	ND	ug/L	1.0	1	C	5/14/19 00:02	74-97-5	M1,R1
Bromodichloromethane	ND	ug/L	10.0	1	C	5/14/19 00:02	75-27-4	M1,R1
Bromoform	ND	ug/L	10.0	1	C	5/14/19 00:02	75-25-2	M1,R1
Bromomethane	ND	ug/L	10.0	1	C	5/14/19 00:02	74-83-9	R1
2-Butanone (MEK)	ND	ug/L	5.0	1	C	5/14/19 00:02	78-93-3	R1
Carbon tetrachloride	ND	ug/L	2.0	1	C	5/14/19 00:02	56-23-5	M1,R1
Chlorobenzene	ND	ug/L	10.0	1	C	5/14/19 00:02	108-90-7	M1,R1
Chloroethane	ND	ug/L	5.0	1	C	5/14/19 00:02	75-00-3	R1
Chloroform	ND	ug/L	2.0	1	C	5/14/19 00:02	67-66-3	M1,R1
Chloromethane	ND	ua/L	10.0	1	C	5/14/19 00:02	74-87-3	R1
2-Chlorotoluene	ND	ua/L	1.0	1	C	05/14/19 00:02	95-49-8	M1.R1
4-Chlorotoluene	ND	ua/L	1.0	1	C	5/14/19 00:02	106-43-4	M1.R1
1.2-Dibromo-3-chloropropane	ND	ua/L	2.0	1	C	5/14/19 00:02	96-12-8	M1.R1
Dibromochloromethane	ND	ua/L	10.0	1	C	5/14/19 00:02	124-48-1	M1.R1
1.2-Dibromoethane (EDB)	ND	ua/L	2.0	1	C	5/14/19 00:02	106-93-4	M1.R1
Dibromomethane	ND	ua/l	10	1	(	$\frac{5}{14}$	74-95-3	M1 R1
1 2-Dichlorobenzene	ND	ua/l	10.0	1	(	$\frac{5}{14}$	95-50-1	M1 R1
1.3-Dichlorobenzene	ND	ug/L	10.0	1	(	5/14/19 00:02	541-73-1	M1 R1
1 4-Dichlorobenzene	ND	ug/L	10.0	1	(	5/14/19 00:02	106-46-7	R1
Dichlorodifluoromethane	ND	ug/L	10	1	(	5/14/19 00:02	75-71-8	M1 R1
1 1-Dichloroethane	ND	ug/L	20	1	(	5/14/19 00:02	75-34-3	R1
1 2-Dichloroethane	ND	ug/L	2.0	1	(	5/14/19 00:02	107-06-2	R1
1 1-Dichloroethene	ND	ug/L	2.0	1	(	5/14/19 00:02	75-35-4	R1
cis-1 2-Dichloroethene	ND	ug/L	1.0	1	(	5/14/19 00:02	156-59-2	M1 R1
trans-1 2-Dichloroethene	ND	ug/L	2.0	1	(	5/14/19 00:02	156-60-5	M1 R1
1 2-Dichloropropage		ug/L	2.0	1	(	5/14/19 00:02	78-87-5	M1 R1
1.3-Dichloropropane		ug/L	1.0	1	(	5/14/19 00:02	142-28-9	M1 R1
2 2-Dichloropropane		ug/L	1.0	1	( (	5/14/19 00:02	594-20-7	R1
1 1-Dichloropropene		ug/L	1.0	1	( (	5/14/19 00:02	563-58-6	M1 R1
cis-1 3-Dichloropropene		ug/L	2.0	1	(	5/14/19 00:02	10061-01-5	R1
trans-1 3-Dichloropropene		ug/L	2.0	1	( (	5/14/19 00:02	10061-01-5	R1
		ug/L	10.0	1	( (	5/14/19 00:02	108-20-3	M1 D1
Ethylbonzono		ug/L	2.0	1		5/14/19 00:02	100-20-3	
Hovachloro 1.3 butadiono		ug/L	2.0	1		5/14/19 00:02	97 69 3	
		ug/L	5.0	1		5/14/19 00:02	501 78 6	
		ug/L	5.0	1		5/14/19 00:02	00 97 6	
P-Isopropylloluene		ug/L	1.0	1		5/14/19 00.02	99-07-0 75 00 0	
Methyl 2 poptopopo (MIDK)		ug/L	5.0	1		5/14/19 00.02	109 10 1	
4-Methyl-2-pentanone (MIBK)		ug/L	5.0 10.0	1		5/14/19 00.02	100-10-1	
Nanhthalana		ug/L	10.0	1		5/14/19 00.02	034-04-4	
Strong		ug/L	1.0	1		5/14/19 00:02	91-20-3	
Jujielle		ug/L	1.0	1		5/14/19/00:02	100-42-5	
	ND	ug/L	1.0	1	(	5/14/19 00:02	030-20-0	WIT, KT
1, 1, 2, 2- letrachioroethane	ND	ug/L	2.0	1	(	5/14/19 00:02	19-34-5	K1
retrachioroethene	ND	ug/L	2.0	1	C	05/14/19 00:02	127-18-4	K1


Project: 825 Warner Street 19-064

#### Pace Project No.: 2618256

Sample: B1	Lab ID: 2618	Lab ID: 2618256004		9 08:55	Received: 0	5/07/19 13:46 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260B MSV	Analytical Meth	od: EPA 82	260B					
Toluene	ND	ug/L	2.0	1		05/14/19 00:02	108-88-3	R1
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		05/14/19 00:02	87-61-6	M1,R1
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		05/14/19 00:02	120-82-1	R1
1,1,1-Trichloroethane	ND	ug/L	2.0	1		05/14/19 00:02	71-55-6	M1,R1
1,1,2-Trichloroethane	ND	ug/L	2.0	1		05/14/19 00:02	79-00-5	M1,R1
Trichloroethene	ND	ug/L	2.0	1		05/14/19 00:02	79-01-6	R1
Trichlorofluoromethane	ND	ug/L	1.0	1		05/14/19 00:02	75-69-4	M1,R1
1,2,3-Trichloropropane	ND	ug/L	1.0	1		05/14/19 00:02	96-18-4	M1,R1
Vinyl acetate	ND	ug/L	2.0	1		05/14/19 00:02	108-05-4	R1
Vinyl chloride	ND	ug/L	10.0	1		05/14/19 00:02	75-01-4	R1
Xylene (Total)	ND	ug/L	2.0	1		05/14/19 00:02	1330-20-7	RS
m&p-Xylene	ND	ug/L	1.0	1		05/14/19 00:02	179601-23-1	R1
o-Xylene	ND	ug/L	1.0	1		05/14/19 00:02	95-47-6	R1
Surrogates								
1,2-Dichloroethane-d4 (S)	97	%.	81-119	1		05/14/19 00:02	17060-07-0	
Dibromofluoromethane (S)	103	%.	82-114	1		05/14/19 00:02	1868-53-7	
4-Bromofluorobenzene (S)	88	%.	82-120	1		05/14/19 00:02	460-00-4	
Toluene-d8 (S)	87	%.	82-109	1		05/14/19 00:02	2037-26-5	



Project: 825 Warner Street 19-064

Pace Project No.: 2618256

Sample: B2	2 Lab ID: 2618256005 Collected: 05/07/19 10:25		Received: 05/07/19 13:46 Matrix: Water					
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270D MSSV PAH	Analytical Meth	nod: EPA 8	270D Preparation Me	ethod: El	PA 3510C			
Acenaphthene	ND	ug/L	10.0	1	05/08/19 12:15	05/08/19 23:49	83-32-9	
Acenaphthylene	ND	ug/L	10.0	1	05/08/19 12:15	05/08/19 23:49	208-96-8	
Anthracene	ND	ug/L	10.0	1	05/08/19 12:15	05/08/19 23:49	120-12-7	
Benzo(a)anthracene	ND	ug/L	10.0	1	05/08/19 12:15	05/08/19 23:49	56-55-3	
Benzo(a)pyrene	ND	ug/L	10.0	1	05/08/19 12:15	05/08/19 23:49	50-32-8	
Benzo(b)fluoranthene	ND	ug/L	10.0	1	05/08/19 12:15	05/08/19 23:49	205-99-2	
Benzo(g,h,i)perylene	ND	ug/L	10.0	1	05/08/19 12:15	05/08/19 23:49	191-24-2	
Benzo(k)fluoranthene	ND	ug/L	10.0	1	05/08/19 12:15	05/08/19 23:49	207-08-9	
Chrysene	ND	ug/L	10.0	1	05/08/19 12:15	05/08/19 23:49	218-01-9	
Dibenz(a,h)anthracene	ND	ug/L	10.0	1	05/08/19 12:15	05/08/19 23:49	53-70-3	
Fluoranthene	ND	ug/L	10.0	1	05/08/19 12:15	05/08/19 23:49	206-44-0	
Fluorene	ND	ug/L	10.0	1	05/08/19 12:15	05/08/19 23:49	86-73-7	
Indeno(1,2,3-cd)pyrene	ND	ug/L	10.0	1	05/08/19 12:15	05/08/19 23:49	193-39-5	
1-Methylnaphthalene	ND	ug/L	10.0	1	05/08/19 12:15	05/08/19 23:49	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	1	05/08/19 12:15	05/08/19 23:49	91-57-6	
Naphthalene	ND	ug/L	10.0	1	05/08/19 12:15	05/08/19 23:49	91-20-3	
Phenanthrene	ND	ug/L	10.0	1	05/08/19 12:15	05/08/19 23:49	85-01-8	
Pyrene	ND	ug/L	10.0	1	05/08/19 12:15	05/08/19 23:49	129-00-0	
Surrogates		-						
Nitrobenzene-d5 (S)	38	%.	13-107	1	05/08/19 12:15	05/08/19 23:49	4165-60-0	
p-Terphenyl-d14 (S)	54	%.	14-147	1	05/08/19 12:15	05/08/19 23:49	1718-51-0	
2-Fluorobiphenyl (S)	54	%.	12-129	1	05/08/19 12:15	05/08/19 23:49	321-60-8	
8260B MSV	Analytical Meth	nod: EPA 8	260B					
Acetone	ND	ug/L	25.0	1		05/14/19 00:28	67-64-1	
Benzene	ND	ug/L	2.0	1		05/14/19 00:28	71-43-2	
Bromobenzene	ND	ug/L	1.0	1		05/14/19 00:28	108-86-1	
Bromochloromethane	ND	ug/L	1.0	1		05/14/19 00:28	74-97-5	
Bromodichloromethane	ND	ug/L	10.0	1		05/14/19 00:28	75-27-4	
Bromoform	ND	ug/L	10.0	1		05/14/19 00:28	75-25-2	
Bromomethane	ND	ug/L	10.0	1		05/14/19 00:28	74-83-9	
2-Butanone (MEK)	ND	ug/L	5.0	1		05/14/19 00:28	78-93-3	
Carbon tetrachloride	ND	ug/L	2.0	1		05/14/19 00:28	56-23-5	
Chlorobenzene	ND	ug/L	10.0	1		05/14/19 00:28	108-90-7	
Chloroethane	ND	ug/L	5.0	1		05/14/19 00:28	75-00-3	
Chloroform	ND	ug/L	2.0	1		05/14/19 00:28	67-66-3	
Chloromethane	ND	ug/L	10.0	1		05/14/19 00:28	74-87-3	
2-Chlorotoluene	ND	ug/L	1.0	1		05/14/19 00:28	95-49-8	
4-Chlorotoluene	ND	ug/L	1.0	1		05/14/19 00:28	106-43-4	
1,2-Dibromo-3-chloropropane	ND	ug/L	2.0	1		05/14/19 00:28	96-12-8	
Dibromochloromethane	ND	ug/L	10.0	1		05/14/19 00:28	124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/L	2.0	1		05/14/19 00:28	106-93-4	
Dibromomethane	ND	ug/L	1.0	1		05/14/19 00:28	74-95-3	
1,2-Dichlorobenzene	ND	ug/L	10.0	1		05/14/19 00:28	95-50-1	
1,3-Dichlorobenzene	ND	ug/L	10.0	1		05/14/19 00:28	541-73-1	
1,4-Dichlorobenzene	ND	ug/L	10.0	1		05/14/19 00:28	106-46-7	
Dichlorodifluoromethane	ND	ug/L	1.0	1		05/14/19 00:28	75-71-8	



Project: 825 Warner Street 19-064

#### Pace Project No.: 2618256

Sample: B2	Lab ID: 2618256005		Collected: 05/07/1	9 10:25	Received: 05	latrix: Water				
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual		
8260B MSV	Analytical Method: EPA 8260B									
1,1-Dichloroethane	ND	ug/L	2.0	1		05/14/19 00:28	75-34-3			
1,2-Dichloroethane	ND	ug/L	2.0	1		05/14/19 00:28	107-06-2			
1,1-Dichloroethene	ND	ug/L	2.0	1		05/14/19 00:28	75-35-4			
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		05/14/19 00:28	156-59-2			
trans-1,2-Dichloroethene	ND	ug/L	2.0	1		05/14/19 00:28	156-60-5			
1,2-Dichloropropane	ND	ug/L	2.0	1		05/14/19 00:28	78-87-5			
1,3-Dichloropropane	ND	ug/L	1.0	1		05/14/19 00:28	142-28-9			
2,2-Dichloropropane	ND	ug/L	1.0	1		05/14/19 00:28	594-20-7			
1,1-Dichloropropene	ND	ug/L	1.0	1		05/14/19 00:28	563-58-6			
cis-1,3-Dichloropropene	ND	ug/L	2.0	1		05/14/19 00:28	10061-01-5			
trans-1,3-Dichloropropene	ND	ug/L	2.0	1		05/14/19 00:28	10061-02-6			
Diisopropyl ether	ND	ug/L	10.0	1		05/14/19 00:28	108-20-3			
Ethylbenzene	ND	ug/L	2.0	1		05/14/19 00:28	100-41-4			
Hexachloro-1,3-butadiene	ND	ug/L	10.0	1		05/14/19 00:28	87-68-3			
2-Hexanone	ND	ug/L	5.0	1		05/14/19 00:28	591-78-6			
p-Isopropyltoluene	ND	ug/L	1.0	1		05/14/19 00:28	99-87-6			
Methylene Chloride	ND	ug/L	5.0	1		05/14/19 00:28	75-09-2			
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		05/14/19 00:28	108-10-1			
Methyl-tert-butyl ether	ND	ug/L	10.0	1		05/14/19 00:28	1634-04-4			
Naphthalene	ND	ug/L	1.0	1		05/14/19 00:28	91-20-3			
Styrene	ND	ug/L	1.0	1		05/14/19 00:28	100-42-5			
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		05/14/19 00:28	630-20-6			
1,1,2,2-Tetrachloroethane	ND	ug/L	2.0	1		05/14/19 00:28	79-34-5			
Tetrachloroethene	ND	ug/L	2.0	1		05/14/19 00:28	127-18-4			
Toluene	ND	ug/L	2.0	1		05/14/19 00:28	108-88-3			
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		05/14/19 00:28	87-61-6			
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		05/14/19 00:28	120-82-1			
1,1,1-Trichloroethane	ND	ug/L	2.0	1		05/14/19 00:28	71-55-6			
1,1,2-Trichloroethane	ND	ug/L	2.0	1		05/14/19 00:28	79-00-5			
Trichloroethene	ND	ug/L	2.0	1		05/14/19 00:28	79-01-6			
Trichlorofluoromethane	ND	ug/L	1.0	1		05/14/19 00:28	75-69-4			
1,2,3-Trichloropropane	ND	ug/L	1.0	1		05/14/19 00:28	96-18-4			
Vinyl acetate	ND	ug/L	2.0	1		05/14/19 00:28	108-05-4			
Vinyl chloride	ND	ug/L	10.0	1		05/14/19 00:28	75-01-4			
Xylene (Total)	ND	ug/L	2.0	1		05/14/19 00:28	1330-20-7			
m&p-Xylene	ND	ug/L	1.0	1		05/14/19 00:28	179601-23-1			
o-Xylene	ND	ug/L	1.0	1		05/14/19 00:28	95-47-6			
Surrogates		0								
1,2-Dichloroethane-d4 (S)	97	%.	81-119	1		05/14/19 00:28	17060-07-0			
Dibromofluoromethane (S)	104	%.	82-114	1		05/14/19 00:28	1868-53-7			
4-Bromofluorobenzene (S)	88	%.	82-120	1		05/14/19 00:28	460-00-4			
Toluene-d8 (S)	87	%.	82-109	1		05/14/19 00:28	2037-26-5			

## **REPORT OF LABORATORY ANALYSIS**



Project: 825 Warner Street 19-064

Pace Project No.: 2618256

Sample: B3	Lab ID: 2618256006 Collected: 05/07/19 11:24			Received: 05/07/19 13:46 Matrix: Water				
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270D MSSV PAH	Analytical Meth	od: EPA 82	270D Preparation Me	thod: E	PA 3510C			
Acenaphthene	ND	ug/L	10.0	1	05/08/19 12:15	05/09/19 00:12	83-32-9	
Acenaphthylene	ND	ug/L	10.0	1	05/08/19 12:15	05/09/19 00:12	208-96-8	
Anthracene	ND	ug/L	10.0	1	05/08/19 12:15	05/09/19 00:12	120-12-7	
Benzo(a)anthracene	ND	ug/L	10.0	1	05/08/19 12:15	05/09/19 00:12	56-55-3	
Benzo(a)pyrene	ND	ug/L	10.0	1	05/08/19 12:15	05/09/19 00:12	50-32-8	
Benzo(b)fluoranthene	ND	ug/L	10.0	1	05/08/19 12:15	05/09/19 00:12	205-99-2	
Benzo(g,h,i)perylene	ND	ug/L	10.0	1	05/08/19 12:15	05/09/19 00:12	191-24-2	
Benzo(k)fluoranthene	ND	ug/L	10.0	1	05/08/19 12:15	05/09/19 00:12	207-08-9	
Chrysene	ND	ug/L	10.0	1	05/08/19 12:15	05/09/19 00:12	218-01-9	
Dibenz(a,h)anthracene	ND	ug/L	10.0	1	05/08/19 12:15	05/09/19 00:12	53-70-3	
Fluoranthene	ND	ug/L	10.0	1	05/08/19 12:15	05/09/19 00:12	206-44-0	
Fluorene	ND	ug/L	10.0	1	05/08/19 12:15	05/09/19 00:12	86-73-7	
Indeno(1,2,3-cd)pyrene	ND	ug/L	10.0	1	05/08/19 12:15	05/09/19 00:12	193-39-5	
1-Methylnaphthalene	ND	ug/L	10.0	1	05/08/19 12:15	05/09/19 00:12	90-12-0	
2-Methylnaphthalene	ND	ug/L	10.0	1	05/08/19 12:15	05/09/19 00:12	91-57-6	
Naphthalene	ND	ug/L	10.0	1	05/08/19 12:15	05/09/19 00:12	91-20-3	
Phenanthrene	ND	ug/L	10.0	1	05/08/19 12:15	05/09/19 00:12	85-01-8	
Pyrene	ND	ug/L	10.0	1	05/08/19 12:15	05/09/19 00:12	129-00-0	
Surrogates								
Nitrobenzene-d5 (S)	35	%.	13-107	1	05/08/19 12:15	05/09/19 00:12	4165-60-0	
p-Terphenyl-d14 (S)	49	%.	14-147	1	05/08/19 12:15	05/09/19 00:12	1718-51-0	
2-Fluorobiphenyl (S)	57	%.	12-129	1	05/08/19 12:15	05/09/19 00:12	321-60-8	
8260B MSV	Analytical Meth	od: EPA 82	260B					
Acetone	ND	ug/L	25.0	1		05/14/19 00:53	67-64-1	
Benzene	ND	ug/L	2.0	1		05/14/19 00:53	71-43-2	
Bromobenzene	ND	ug/L	1.0	1		05/14/19 00:53	108-86-1	
Bromochloromethane	ND	ug/L	1.0	1		05/14/19 00:53	74-97-5	
Bromodichloromethane	ND	ug/L	10.0	1		05/14/19 00:53	75-27-4	
Bromoform	ND	ug/L	10.0	1		05/14/19 00:53	75-25-2	
Bromomethane	ND	ug/L	10.0	1		05/14/19 00:53	74-83-9	
2-Butanone (MEK)	ND	ug/L	5.0	1		05/14/19 00:53	78-93-3	
Carbon tetrachloride	ND	ug/L	2.0	1		05/14/19 00:53	56-23-5	
Chlorobenzene	ND	ug/L	10.0	1		05/14/19 00:53	108-90-7	
Chloroethane	ND	ug/L	5.0	1		05/14/19 00:53	75-00-3	
Chloroform	ND	ug/L	2.0	1		05/14/19 00:53	67-66-3	
Chloromethane	ND	ug/L	10.0	1		05/14/19 00:53	74-87-3	
2-Chlorotoluene	ND	ug/L	1.0	1		05/14/19 00:53	95-49-8	
4-Chlorotoluene	ND	ug/L	1.0	1		05/14/19 00:53	106-43-4	
1,2-Dibromo-3-chloropropane	ND	ug/L	2.0	1		05/14/19 00:53	96-12-8	
Dibromochloromethane	ND	ug/L	10.0	1		05/14/19 00:53	124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/L	2.0	1		05/14/19 00:53	106-93-4	
Dibromomethane	ND	ug/L	1.0	1		05/14/19 00:53	74-95-3	
1,2-Dichlorobenzene	ND	ug/L	10.0	1		05/14/19 00:53	95-50-1	
1,3-Dichlorobenzene	ND	ug/L	10.0	1		05/14/19 00:53	541-73-1	
1,4-Dichlorobenzene	ND	ug/L	10.0	1		05/14/19 00:53	106-46-7	
Dichlorodifluoromethane	ND	ug/L	1.0	1		05/14/19 00:53	75-71-8	



Project: 825 Warner Street 19-064

#### Pace Project No.: 2618256

Sample: B3	Lab ID: 2618256006		Collected: 05/07/1	9 11:24	Received: 0	latrix: Water				
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual		
8260B MSV	Analytical Method: EPA 8260B									
1,1-Dichloroethane	ND	ug/L	2.0	1		05/14/19 00:53	75-34-3			
1,2-Dichloroethane	ND	ug/L	2.0	1		05/14/19 00:53	107-06-2			
1,1-Dichloroethene	ND	ug/L	2.0	1		05/14/19 00:53	75-35-4			
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		05/14/19 00:53	156-59-2			
trans-1,2-Dichloroethene	ND	ug/L	2.0	1		05/14/19 00:53	156-60-5			
1,2-Dichloropropane	ND	ug/L	2.0	1		05/14/19 00:53	78-87-5			
1,3-Dichloropropane	ND	ug/L	1.0	1		05/14/19 00:53	142-28-9			
2,2-Dichloropropane	ND	ug/L	1.0	1		05/14/19 00:53	594-20-7			
1,1-Dichloropropene	ND	ug/L	1.0	1		05/14/19 00:53	563-58-6			
cis-1,3-Dichloropropene	ND	ug/L	2.0	1		05/14/19 00:53	10061-01-5			
trans-1,3-Dichloropropene	ND	ug/L	2.0	1		05/14/19 00:53	10061-02-6			
Diisopropyl ether	ND	ug/L	10.0	1		05/14/19 00:53	108-20-3			
Ethylbenzene	ND	ug/L	2.0	1		05/14/19 00:53	100-41-4			
Hexachloro-1,3-butadiene	ND	ug/L	10.0	1		05/14/19 00:53	87-68-3			
2-Hexanone	ND	ug/L	5.0	1		05/14/19 00:53	591-78-6			
p-Isopropyltoluene	ND	ug/L	1.0	1		05/14/19 00:53	99-87-6			
Methylene Chloride	ND	ug/L	5.0	1		05/14/19 00:53	75-09-2			
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		05/14/19 00:53	108-10-1			
Methyl-tert-butyl ether	ND	ug/L	10.0	1		05/14/19 00:53	1634-04-4			
Naphthalene	2.9	ug/L	1.0	1		05/14/19 00:53	91-20-3			
Styrene	ND	ug/L	1.0	1		05/14/19 00:53	100-42-5			
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		05/14/19 00:53	630-20-6			
1,1,2,2-Tetrachloroethane	ND	ug/L	2.0	1		05/14/19 00:53	79-34-5			
Tetrachloroethene	ND	ug/L	2.0	1		05/14/19 00:53	127-18-4			
Toluene	ND	ug/L	2.0	1		05/14/19 00:53	108-88-3			
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		05/14/19 00:53	87-61-6			
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		05/14/19 00:53	120-82-1			
1,1,1-Trichloroethane	ND	ug/L	2.0	1		05/14/19 00:53	71-55-6			
1,1,2-Trichloroethane	ND	ug/L	2.0	1		05/14/19 00:53	79-00-5			
Trichloroethene	ND	ug/L	2.0	1		05/14/19 00:53	79-01-6			
Trichlorofluoromethane	ND	ug/L	1.0	1		05/14/19 00:53	75-69-4			
1,2,3-Trichloropropane	ND	ug/L	1.0	1		05/14/19 00:53	96-18-4			
Vinyl acetate	ND	ug/L	2.0	1		05/14/19 00:53	108-05-4			
Vinyl chloride	ND	ug/L	10.0	1		05/14/19 00:53	75-01-4			
Xylene (Total)	ND	ug/L	2.0	1		05/14/19 00:53	1330-20-7			
m&p-Xylene	ND	ug/L	1.0	1		05/14/19 00:53	179601-23-1			
o-Xylene	ND	ug/L	1.0	1		05/14/19 00:53	95-47-6			
Surrogates		-								
1,2-Dichloroethane-d4 (S)	101	%.	81-119	1		05/14/19 00:53	17060-07-0			
Dibromofluoromethane (S)	106	%.	82-114	1		05/14/19 00:53	1868-53-7			
4-Bromofluorobenzene (S)	89	%.	82-120	1		05/14/19 00:53	460-00-4			
Toluene-d8 (S)	86	%.	82-109	1		05/14/19 00:53	2037-26-5			



#### Project: 825 Warner Street 19-064

#### Pace Project No.: 2618256

Sample: Trip Blank	Lab ID: 2618256007		Collected: 05/07/1	9 00:00	Received: 05/07/19 13:46		
Parameters	Results	Units	Report Limit	DF	Prepared Analyze	d CAS No.	Qual
8260B MSV	Analytical Meth	nod: EPA 8	260B				
Acetone	ND	ug/L	25.0	1	05/14/19 01	1:19 67-64-1	
Benzene	ND	ug/L	2.0	1	05/14/19 01	:19 71-43-2	
Bromobenzene	ND	ug/L	1.0	1	05/14/19 01	:19 108-86-1	
Bromochloromethane	ND	ug/L	1.0	1	05/14/19 01	:19 74-97-5	
Bromodichloromethane	ND	ug/L	10.0	1	05/14/19 01	:19 75-27-4	
Bromoform	ND	ug/L	10.0	1	05/14/19 01	:19 75-25-2	
Bromomethane	ND	ug/L	10.0	1	05/14/19 01	:19 74-83-9	
2-Butanone (MEK)	ND	ug/L	5.0	1	05/14/19 01	:19 78-93-3	
Carbon tetrachloride	ND	ug/L	2.0	1	05/14/19 01	:19 56-23-5	
Chlorobenzene	ND	ug/L	10.0	1	05/14/19 01	1:19 108-90-7	
Chloroethane	ND	ug/L	5.0	1	05/14/19 01	1:19 75-00-3	
Chloroform	ND	ug/L	2.0	1	05/14/19 01	:19 67-66-3	
Chloromethane	ND	ug/L	10.0	1	05/14/19 01	1:19 74-87-3	
2-Chlorotoluene	ND	ug/L	1.0	1	05/14/19 01	1:19 95-49-8	
4-Chlorotoluene	ND	ua/L	1.0	1	05/14/19 01	1:19 106-43-4	
1.2-Dibromo-3-chloropropane	ND	ug/L	2.0	1	05/14/19 01	:19 96-12-8	
Dibromochloromethane	ND	ug/L	10.0	1	05/14/19 01	1:19 124-48-1	
1.2-Dibromoethane (EDB)	ND	ua/L	2.0	1	05/14/19 01	1:19 106-93-4	
Dibromomethane	ND	ua/L	1.0	1	05/14/19 01	:19 74-95-3	
1.2-Dichlorobenzene	ND	ua/L	10.0	1	05/14/19 01	:19 95-50-1	
1 3-Dichlorobenzene	ND	ua/l	10.0	1	05/14/19.01	19 541-73-1	
1.4-Dichlorobenzene	ND	ug/L	10.0	1	05/14/19 01	1:19 106-46-7	
Dichlorodifluoromethane	ND	ua/L	1.0	1	05/14/19 01	:19 75-71-8	
1.1-Dichloroethane	ND	ua/L	2.0	1	05/14/19 01	:19 75-34-3	
1 2-Dichloroethane	ND	ua/l	2.0	1	05/14/19.01	19 107-06-2	
1 1-Dichloroethene	ND	ua/l	20	1	05/14/19 02	19 75-35-4	
cis-1.2-Dichloroethene	ND	ua/L	1.0	1	05/14/19 01	1:19 156-59-2	
trans-1 2-Dichloroethene	ND	ua/l	20	1	05/14/19.01	19 156-60-5	
1 2-Dichloropropane	ND	ua/l	20	1	05/14/19 02	1.19 78-87-5	
1.3-Dichloropropane	ND	ug/L	1.0	1	05/14/19 0	1.19 142-28-9	
2 2-Dichloropropane	ND	ug/L	1.0	1	05/14/19 0	19 594-20-7	
1 1-Dichloropropene	ND	ug/L	1.0	1	05/14/19 0	119 563-58-6	
cis-1 3-Dichloropropene	ND	ua/l	20	1	05/14/19 02	1.19 10061-01-5	
trans-1 3-Dichloropropene	ND	ua/l	20	1	05/14/19 02	1.19 10061-02-6	
Diisopropyl ether	ND	ug/L	10.0	1	05/14/19 0	1.19 108-20-3	
Ethylbenzene	ND	ug/L	20	1	05/14/19 0	1.19 100-41-4	
Hexachloro-1 3-butadiene	ND	ug/L	10.0	1	05/14/19 0	1.19 87-68-3	
2-Hexanone	ND	ug/L	5.0	1	05/14/19 0	1.10 591-78-6	
n-Isopropyltoluene		ug/L	1.0	1	05/14/19 0	1.10 00-87-6	
Methylene Chloride		ug/L	5.0	1	05/14/19 0	1.10 75-09-2	
4-Methyl-2-pentanone (MIBK)		ug/L	5.0	1	05/14/19 0	1.19 108-10-1	
Methyl_tert_butyl_ether		ug/L	10.0	1	05/14/19 0	1.19 1634-04-4	
Nanhthalene		ug/L	10.0	1	05/17/10 0	1.10 01_20_2	
Styrono		ug/L	1.0	1	05/14/19 0	1.10 100 42 5	
1 1 1 2 Totrachloroothano	שאו סוא	ug/L	1.0	1	05/14/19 0	110 630 20 6	
1 1 2 2 Totrachloraethana	<b>ט</b> או חוא	ug/L	1.0	1	05/14/19 0	10 70 24 5	
Totrachloroothone	<b>ט</b> או חוא	ug/L	2.0	1	05/14/19 0	10 107 10 1	
I CHACHIOI U CHICHE	ND.	uy/L	2.0	I	03/14/19 0	.13 121-10-4	



#### Project: 825 Warner Street 19-064

#### Pace Project No.: 2618256

Sample: Trip Blank	Lab ID: 2618	Lab ID: 2618256007		9 00:00	Received: 05	latrix: Water		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260B MSV	Analytical Meth	od: EPA 82	260B					
Toluene	ND	ug/L	2.0	1		05/14/19 01:19	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		05/14/19 01:19	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		05/14/19 01:19	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	2.0	1		05/14/19 01:19	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	2.0	1		05/14/19 01:19	79-00-5	
Trichloroethene	ND	ug/L	2.0	1		05/14/19 01:19	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		05/14/19 01:19	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1		05/14/19 01:19	96-18-4	
Vinyl acetate	ND	ug/L	2.0	1		05/14/19 01:19	108-05-4	
Vinyl chloride	ND	ug/L	10.0	1		05/14/19 01:19	75-01-4	
Xylene (Total)	ND	ug/L	2.0	1		05/14/19 01:19	1330-20-7	
m&p-Xylene	ND	ug/L	1.0	1		05/14/19 01:19	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		05/14/19 01:19	95-47-6	
Surrogates								
1,2-Dichloroethane-d4 (S)	99	%.	81-119	1		05/14/19 01:19	17060-07-0	
Dibromofluoromethane (S)	104	%.	82-114	1		05/14/19 01:19	1868-53-7	
4-Bromofluorobenzene (S)	88	%.	82-120	1		05/14/19 01:19	460-00-4	
Toluene-d8 (S)	86	%.	82-109	1		05/14/19 01:19	2037-26-5	



Project: 825 Warner Street 19-064

Pace Project No.: 2618256

Sample: B1-3-4'	Lab ID: 261	8256008	Collected: 05/07/1	5 Received: 05	Received: 05/07/19 13:46 Matrix: Solid				
Results reported on a "dry wei	ight" basis and are adj	usted for p	ercent moisture, sa	mple s	ize and any dilu	tions.			
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual	
6010D MET ICP	Analytical Meth	nod: EPA 60	10D Preparation Me	ethod: E	PA 3050B				
Arsenic	ND	mg/kg	3.2	1	05/09/19 10:08	05/11/19 03:46	7440-38-2		
Barium	63.9	mg/kg	1.1	1	05/09/19 10:08	05/11/19 03:46	7440-39-3		
Cadmium	3.7	mg/kg	1.1	1	05/09/19 10:08	05/11/19 03:46	7440-43-9		
Chromium	47.5	mg/kg	1.1	1	05/09/19 10:08	05/11/19 03:46	7440-47-3		
Lead	39.2	mg/kg	2.7	1	05/09/19 10:08	05/11/19 03:46	7439-92-1		
Selenium	ND	mg/kg	4.3	1	05/09/19 10:08	05/11/19 03:46	7782-49-2		
Silver	ND	mg/kg	1.1	1	05/09/19 10:08	05/11/19 03:46	7440-22-4		
7471 Mercury	Analytical Meth	nod: EPA 74	71B Preparation Me	ethod: E	PA 7471B				
Mercury	ND	mg/kg	0.27	1	05/13/19 14:20	05/14/19 11:10	7439-97-6		
Percent Moisture	Analytical Meth	nod: Pace S	OP #204						
Percent Moisture	14.6	%	0.10	1		05/13/19 10:04			



Project:	825 Warner Street	19-064										
Pace Project No.:	2618256											
QC Batch:	27845		Analy	sis Meth	od: E	PA 7471B						
QC Batch Method:	EPA 7471B		Analy	sis Desc	ription: 7	471 Mercu	ry					
Associated Lab San	nples: 26182560	02, 2618256003										
METHOD BLANK:	125382			Matrix: S	Solid							
Associated Lab San	nples: 26182560	02, 2618256003										
			Blar	۱k	Reporting							
Paran	neter	Units	Res	ult	Limit	Anal	yzed	Qualifier	S			
Mercury		mg/kg		ND	0.25	5 05/08/1	9 21:18					
LABORATORY COM	NTROL SAMPLE:	125383										
			Spike	L	CS	LCS	% R	ec				
Paran	neter	Units	Conc.	Re	esult	% Rec	Limi	ts	Qualifiers	_		
Mercury		mg/kg	0.3	3	0.39	11	7 8	30-120				
MATRIX SPIKE & M	IATRIX SPIKE DUP	LICATE: 1256	54		125655							
			MS	MSD								
Parameter	. Units	2618124001 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Mercury	mg/kg	ND	0.33	0.33	3 0.44	0.44	106	105	80-120	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project:	825 Warner Street	19-064										
Pace Project No.:	2618256											
QC Batch:	28248		Analy	sis Metho	od: E	EPA 7471B						
QC Batch Method:	EPA 7471B		Analy	/sis Descr	iption: 7	471 Mercu	ry					
Associated Lab Sar	nples: 26182560	08										
METHOD BLANK:	127294			Matrix: S	olid							
Associated Lab Sar	nples: 26182560	08										
			Blar	ık	Reporting							
Paran	neter	Units	Res	ult	Limit	Anal	/zed	Qualifier	S			
Mercury		mg/kg		ND	0.28	5 05/14/1	9 11:05					
LABORATORY COI	NTROL SAMPLE:	127295										
			Spike	LC	CS	LCS	% Re	ec				
Paran	neter	Units	Conc.	Re	sult	% Rec	Limit	S	Qualifiers			
Mercury		mg/kg	0.3	3	0.34	10	4 8	0-120				
MATRIX SPIKE & M	IATRIX SPIKE DUP	LICATE: 1272	96		127297							
			MS	MSD								
		2618256008	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Mercury	mg/kg	ND	0.36	0.36	0.43	0.43	106	105	80-120	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: 825 Warner Street 19-064

Pace Project No.: 2618256

QC Batch: 280	03		Anal	Analysis Method:			PA 6010D						
QC Batch Method: EPA	3050B		Anal	ysis De	scription:	60	010D MET						
Associated Lab Samples:	261825600	2, 2618256003											
METHOD BLANK: 1259	14			Matrix	Solid								
Associated Lab Samples:	261825600	2, 2618256003											
			Blai	nk	Reportir	ng							
Parameter		Units	Res	ult	Limit		Analy	/zed	Qualifier	S			
Arsenic		mg/kg		ND		3.0	05/09/19	9 07:55					
Barium		mg/kg		ND		1.0	05/09/19	9 07:55					
Cadmium		mg/kg		ND		1.0	05/09/19	9 07:55					
Chromium		mg/kg		ND		1.0	05/09/19	9 07:55					
Lead		mg/kg		ND		2.5	05/09/19	9 07:55					
Selenium		mg/kg		ND		4.0	05/09/19	9 07:55					
Silver		mg/kg		ND		1.0	05/09/19	9 07:55					
LABORATORY CONTROL	SAMPLE:	125915											
			Spike		LCS		LCS	%	Rec				
Parameter		Units	Conc.		Result		% Rec	Lir	nits	Qualifiers			
Arsenic		mg/kg	10	00	103		103	3	80-120		_		
Barium		mg/kg	10	00	106		106	6	80-120				
Cadmium		mg/kg	10	00	104		104	4	80-120				
Chromium		mg/kg	10	00	107		107	7	80-120				
Lead		mg/kg	10	00	104		104	4	80-120				
Selenium		mg/kg	10	00	102		102	2	80-120				
Silver		mg/kg	10	00	104		104	4	80-120				
MATRIX SPIKE & MATRIX		ICATE: 1259	16		1259	17							
	_		MS	MSD									
		2618256002	Spike	Spike	MS		MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc	Resul	t	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Arsenic	mg/kg	27.9	121	1	21 1	36	150	8	9 101	75-125	10	20	
Barium	mg/kg	276	121	1	21 4	80	308	16	9 26	75-125	44	20	M1,R1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

121

121

121

121

121

131

159

102

125

10700

130

233

2360

95.4

124

84

106

4020

85

104

84

167

79

102

-2920

75-125

75-125

75-125

75-125

75-125

0 20

38

128

7 20

1 20

20 M1,R1

20 M1,R1

#### **REPORT OF LABORATORY ANALYSIS**

Cadmium

Chromium

Selenium

Lead

Silver

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

28.9

31.9

5880

ND

ND

121

121

121

121

121



Project [.]	825 Warner Street 19-064
1 10/000	

Pace Project No.: 2618256					
QC Batch: 28077		Analysis Meth	nod: Ef	PA 6010D	
QC Batch Method: EPA 3050B		Analysis Des	cription: 60	10D MET	
Associated Lab Samples: 2618256008					
METHOD BLANK: 126366		Matrix:	Solid		
Associated Lab Samples: 2618256008					
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Arsenic	mg/kg	ND	2.9	05/11/19 02:19	
Barium	mg/kg	ND	0.98	05/11/19 02:19	
Cadmium	mg/kg	ND	0.98	05/11/19 02:19	
Chromium	mg/kg	ND	0.98	05/11/19 18:40	
Lead	mg/kg	ND	2.5	05/11/19 02:19	
Selenium	mg/kg	ND	3.9	05/11/19 02:19	
Silver	mg/kg	ND	0.98	05/11/19 02:19	
Chromium Lead Selenium Silver	mg/kg mg/kg mg/kg mg/kg	ND ND ND ND	0.98 2.5 3.9 0.98	05/11/19 18:40 05/11/19 02:19 05/11/19 02:19 05/11/19 02:19	
LABORATORY CONTROL SAMPLE: 1	26367				

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic	mg/kg	98	107	109	80-120	
Barium	mg/kg	98	95.0	97	80-120	
Cadmium	mg/kg	98	105	107	80-120	
Chromium	mg/kg	98	99.4	101	80-120	
Lead	mg/kg	98	98.8	101	80-120	
Selenium	mg/kg	98	111	114	80-120	
Silver	mg/kg	98	104	106	80-120	

MATRIX SPIKE & MATRIX SPI	126369											
			MS	MSD								
		2618259001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Arsenic	mg/kg	ND	120	113	115	114	95	101	75-125	0	20	
Barium	mg/kg	7.3	120	113	114	111	89	92	75-125	2	20	
Cadmium	mg/kg	1.4	120	113	119	117	98	103	75-125	1	20	
Chromium	mg/kg	6.2	120	113	129	127	103	107	75-125	1	20	
Lead	mg/kg	5.4	120	113	115	114	91	96	75-125	0	20	
Selenium	mg/kg	ND	120	113	117	117	98	103	75-125	1	20	
Silver	mg/kg	ND	120	113	125	124	104	109	75-125	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**



Project: 825 Warner Street 19-064

Pace Project No.: 2618256

QC Batch: 27955		Analysis Met	hod: EF	A 8260B	
QC Batch Method: EPA	5035	Analysis Des	cription: 82	60 MSV 5035	
Associated Lab Samples:	2618256001, 2618256002				
METHOD BLANK: 125799	)	Matrix:	Solid		
Associated Lab Samples:	2618256001 2618256002				
	2010200001, 2010200002	Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1,2- letrachioroethane	ug/kg	ND	5.0	05/07/19 20:24	
	ug/kg	ND	5.0	05/07/19 20:24	
1,1,2,2- letrachloroethane	ug/kg	ND	5.0	05/07/19 20:24	
1,1,2-Trichloroethane	ug/kg	ND	5.0	05/07/19 20:24	
1,1-Dichloroethane	ug/kg	ND	5.0	05/07/19 20:24	
1,1-Dichloroethene	ug/kg	ND	5.0	05/07/19 20:24	
1,1-Dichloropropene	ug/kg	ND	5.0	05/07/19 20:24	
1,2,3-Trichlorobenzene	ug/kg	ND	5.0	05/07/19 20:24	
1,2,3-Trichloropropane	ug/kg	ND	5.0	05/07/19 20:24	
1,2,4-Trichlorobenzene	ug/kg	ND	5.0	05/07/19 20:24	
1,2,4-Trimethylbenzene	ug/kg	ND	5.0	05/07/19 20:24	
1,2-Dibromo-3-chloropropar	ne ug/kg	ND	5.0	05/07/19 20:24	
1,2-Dibromoethane (EDB)	ug/kg	ND	5.0	05/07/19 20:24	
1,2-Dichlorobenzene	ug/kg	ND	5.0	05/07/19 20:24	
1,2-Dichloroethane	ug/kg	ND	5.0	05/07/19 20:24	
1,2-Dichloropropane	ug/kg	ND	5.0	05/07/19 20:24	
1,3,5-Trimethylbenzene	ug/kg	ND	5.0	05/07/19 20:24	
1,3-Dichlorobenzene	ug/kg	ND	5.0	05/07/19 20:24	
1,3-Dichloropropane	ug/kg	ND	5.0	05/07/19 20:24	
1,4-Dichlorobenzene	ug/kg	ND	5.0	05/07/19 20:24	
2,2-Dichloropropane	ug/kg	ND	5.0	05/07/19 20:24	
2-Butanone (MEK)	ug/kg	ND	100	05/07/19 20:24	
2-Chlorotoluene	ug/kg	ND	5.0	05/07/19 20:24	
2-Hexanone	ug/kg	ND	50.0	05/07/19 20:24	
4-Chlorotoluene	ug/kg	ND	5.0	05/07/19 20:24	
4-Methyl-2-pentanone (MIBI	K) ug/kg	ND	50.0	05/07/19 20:24	
Acetone	ug/kg	ND	100	05/07/19 20:24	
Acrolein	ug/kg	ND	50.0	05/07/19 20:24	
Acrylonitrile	ug/kg	ND	50.0	05/07/19 20:24	
Benzene	ug/kg	ND	5.0	05/07/19 20:24	
Bromobenzene	ug/kg	ND	5.0	05/07/19 20:24	
Bromochloromethane	ug/kg	ND	5.0	05/07/19 20:24	
Bromodichloromethane	ug/kg	ND	5.0	05/07/19 20:24	
Bromoform	ug/kg	ND	5.0	05/07/19 20:24	
Bromomethane	ug/kg	ND	10.0	05/07/19 20:24	
Carbon disulfide	ug/kg	ND	10.0	05/07/19 20:24	
Carbon tetrachloride	ug/kg	ND	5.0	05/07/19 20:24	
Chlorobenzene	ug/kg	ND	10.0	05/07/19 20:24	
Chloroethane	ug/kg	ND	5.0	05/07/19 20:24	
Chloroform	ug/kg	ND	5.0	05/07/19 20:24	
Chloromethane	ug/kg	ND	10.0	05/07/19 20:24	v2

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**



Project: 825 Warner Street 19-064

Pace Project No.: 2618256

METHOD BLANK: 125799	9	Matrix:	Solid		
Associated Lab Samples:	2618256001, 2618256002	Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
cis-1,2-Dichloroethene	ug/kg	ND	5.0	05/07/19 20:24	
cis-1,3-Dichloropropene	ug/kg	ND	5.0	05/07/19 20:24	
Dibromochloromethane	ug/kg	ND	5.0	05/07/19 20:24	
Dibromomethane	ug/kg	ND	5.0	05/07/19 20:24	
Dichlorodifluoromethane	ug/kg	ND	10.0	05/07/19 20:24	
Diisopropyl ether	ug/kg	ND	5.0	05/07/19 20:24	
Ethylbenzene	ug/kg	ND	5.0	05/07/19 20:24	
Isopropylbenzene (Cumene	) ug/kg	ND	5.0	05/07/19 20:24	
m&p-Xylene	ug/kg	ND	5.0	05/07/19 20:24	
Methyl-tert-butyl ether	ug/kg	ND	5.0	05/07/19 20:24	
Methylene Chloride	ug/kg	ND	10.0	05/07/19 20:24	
n-Butylbenzene	ug/kg	ND	5.0	05/07/19 20:24	
n-Propylbenzene	ug/kg	ND	5.0	05/07/19 20:24	
Naphthalene	ug/kg	ND	5.0	05/07/19 20:24	
o-Xylene	ug/kg	ND	5.0	05/07/19 20:24	
p-Isopropyltoluene	ug/kg	ND	5.0	05/07/19 20:24	
sec-Butylbenzene	ug/kg	ND	5.0	05/07/19 20:24	
Styrene	ug/kg	ND	5.0	05/07/19 20:24	
tert-Butylbenzene	ug/kg	ND	5.0	05/07/19 20:24	
Tetrachloroethene	ug/kg	ND	5.0	05/07/19 20:24	
Toluene	ug/kg	ND	5.0	05/07/19 20:24	
trans-1,2-Dichloroethene	ug/kg	ND	5.0	05/07/19 20:24	
trans-1,3-Dichloropropene	ug/kg	ND	5.0	05/07/19 20:24	
Trichloroethene	ug/kg	ND	5.0	05/07/19 20:24	
Trichlorofluoromethane	ug/kg	ND	5.0	05/07/19 20:24	
Vinyl acetate	ug/kg	ND	10.0	05/07/19 20:24	
Vinyl chloride	ug/kg	ND	10.0	05/07/19 20:24	
Xylene (Total)	ug/kg	ND	10.0	05/07/19 20:24	
1,2-Dichloroethane-d4 (S)	%.	111	69-133	05/07/19 20:24	
4-Bromofluorobenzene (S)	%.	114	77-124	05/07/19 20:24	
Dibromofluoromethane (S)	%.	105	73-114	05/07/19 20:24	
Toluene-d8 (S)	%.	104	85-109	05/07/19 20:24	

METHOD BLANK: 125803

Matrix: Solid

Associated Lab Samples: 2618256001, 2618256002

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/kg	ND	250	05/07/19 20:49	
1,1,1-Trichloroethane	ug/kg	ND	250	05/07/19 20:49	
1,1,2,2-Tetrachloroethane	ug/kg	ND	250	05/07/19 20:49	
1,1,2-Trichloroethane	ug/kg	ND	250	05/07/19 20:49	
1,1-Dichloroethane	ug/kg	ND	250	05/07/19 20:49	
1,1-Dichloroethene	ug/kg	ND	250	05/07/19 20:49	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**



Project: 825 Warner Street 19-064

Pace Project No.: 2618256

METHOD BLANK: 125803		Matrix:	Solid		
Associated Lab Samples:	2618256001, 2618256002				
	·	Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1-Dichloropropene	ug/kg	ND	250	05/07/19 20:49	
1,2,3-Trichlorobenzene	ug/kg	ND	250	05/07/19 20:49	
1,2,3-Trichloropropane	ug/kg	ND	250	05/07/19 20:49	
1,2,4-Trichlorobenzene	ug/kg	ND	250	05/07/19 20:49	
1,2,4-Trimethylbenzene	ug/kg	ND	250	05/07/19 20:49	
1,2-Dibromo-3-chloropropan	e ug/kg	ND	250	05/07/19 20:49	
1,2-Dibromoethane (EDB)	ug/kg	ND	250	05/07/19 20:49	
1,2-Dichlorobenzene	ug/kg	ND	250	05/07/19 20:49	
1,2-Dichloroethane	ug/kg	ND	250	05/07/19 20:49	
1,2-Dichloropropane	ug/kg	ND	250	05/07/19 20:49	
1,3,5-Trimethylbenzene	ug/kg	ND	250	05/07/19 20:49	
1,3-Dichlorobenzene	ug/kg	ND	250	05/07/19 20:49	
1,3-Dichloropropane	ug/kg	ND	250	05/07/19 20:49	
1,4-Dichlorobenzene	ug/kg	ND	250	05/07/19 20:49	
2,2-Dichloropropane	ug/kg	ND	250	05/07/19 20:49	
2-Butanone (MEK)	ug/kg	ND	5000	05/07/19 20:49	
2-Chlorotoluene	ug/kg	ND	250	05/07/19 20:49	
2-Hexanone	ug/kg	ND	2500	05/07/19 20:49	
4-Chlorotoluene	ug/kg	ND	250	05/07/19 20:49	
4-Methyl-2-pentanone (MIBk	() ua/ka	ND	2500	05/07/19 20:49	
Acetone	y ua/ka	ND	5000	05/07/19 20:49	
Acrolein	ug/kg	ND	2500	05/07/19 20:49	
Acrylonitrile	ug/kg	ND	2500	05/07/19 20:49	
Benzene	ug/kg	ND	250	05/07/19 20:49	
Bromobenzene	ua/ka	ND	250	05/07/19 20:49	
Bromochloromethane	ua/ka	ND	250	05/07/19 20:49	
Bromodichloromethane	ua/ka	ND	250	05/07/19 20:49	
Bromoform	ua/ka	ND	250	05/07/19 20:49	
Bromomethane	ua/ka	ND	500	05/07/19 20:49	
Carbon disulfide	ua/ka	ND	500	05/07/19 20:49	
Carbon tetrachloride	ua/ka	ND	250	05/07/19 20:49	
Chlorobenzene	ua/ka	ND	500	05/07/19 20:49	
Chloroethane	ua/ka	ND	250	05/07/19 20:49	
Chloroform	ua/ka	ND	250	05/07/19 20:49	
Chloromethane	ua/ka	ND	500	05/07/19 20:49	v2
cis-1.2-Dichloroethene	ua/ka	ND	250	05/07/19 20:49	· <b>-</b>
cis-1.3-Dichloropropene	ua/ka	ND	250	05/07/19 20:49	
Dibromochloromethane	ua/ka	ND	250	05/07/19 20:49	
Dibromomethane	ua/ka	ND	250	05/07/19 20:49	
Dichlorodifluoromethane	ua/ka	ND	500	05/07/19 20:49	
Diisopropyl ether	ua/ka	ND	250	05/07/19 20:49	
Ethylbenzene	ua/ka	ND	250	05/07/19 20:49	
Isopropylbenzene (Cumene)	ua/ka	ND	250	05/07/19 20:49	
m&p-Xvlene	ua/ka		250	05/07/19 20:49	
Methyl-tert-butyl ether	ua/ka	ND	250	05/07/19 20:49	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		200		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Matrix: Solid

Project: 825 Warner Street 19-064 Pace Project No.: 2618256

METHOD BLANK: 125803

Associated Lab Samples: 2618256001, 2618256002

Parameter	Linits	Blank Result	Reporting	Analyzed	Qualifiers
				/ analyzed	
Methylene Chloride	ug/kg	ND	500	05/07/19 20:49	
n-Butylbenzene	ug/kg	ND	250	05/07/19 20:49	
n-Propylbenzene	ug/kg	ND	250	05/07/19 20:49	
Naphthalene	ug/kg	ND	250	05/07/19 20:49	
o-Xylene	ug/kg	ND	250	05/07/19 20:49	
p-Isopropyltoluene	ug/kg	ND	250	05/07/19 20:49	
sec-Butylbenzene	ug/kg	ND	250	05/07/19 20:49	
Styrene	ug/kg	ND	250	05/07/19 20:49	
tert-Butylbenzene	ug/kg	ND	250	05/07/19 20:49	
Tetrachloroethene	ug/kg	ND	250	05/07/19 20:49	
Toluene	ug/kg	ND	250	05/07/19 20:49	
trans-1,2-Dichloroethene	ug/kg	ND	250	05/07/19 20:49	
trans-1,3-Dichloropropene	ug/kg	ND	250	05/07/19 20:49	
Trichloroethene	ug/kg	ND	250	05/07/19 20:49	
Trichlorofluoromethane	ug/kg	ND	250	05/07/19 20:49	
Vinyl acetate	ug/kg	ND	500	05/07/19 20:49	
Vinyl chloride	ug/kg	ND	500	05/07/19 20:49	
Xylene (Total)	ug/kg	ND	500	05/07/19 20:49	
1,2-Dichloroethane-d4 (S)	%.	111	69-133	05/07/19 20:49	
4-Bromofluorobenzene (S)	%.	111	77-124	05/07/19 20:49	
Dibromofluoromethane (S)	%.	106	73-114	05/07/19 20:49	
Toluene-d8 (S)	%.	104	85-109	05/07/19 20:49	

LABORATORY CONTROL SAMPLE: 125800

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/kg		63.1	126	61-133	
1,1,1-Trichloroethane	ug/kg	50	52.0	104	71-149	
1,1,2,2-Tetrachloroethane	ug/kg	50	54.8	110	70-134	
1,1,2-Trichloroethane	ug/kg	50	53.5	107	74-139	
1,1-Dichloroethane	ug/kg	50	51.0	102	81-140	
1,1-Dichloroethene	ug/kg	50	50.4	101	68-150	
1,1-Dichloropropene	ug/kg	50	49.4	99	71-139	
1,2,3-Trichlorobenzene	ug/kg	50	58.5	117	40-164	
1,2,3-Trichloropropane	ug/kg	50	55.6	111	72-141	
1,2,4-Trichlorobenzene	ug/kg	50	57.2	114	49-147	
1,2,4-Trimethylbenzene	ug/kg	50	55.9	112	64-137	
1,2-Dibromo-3-chloropropane	ug/kg	50	53.1	106	80-134	
1,2-Dibromoethane (EDB)	ug/kg	50	53.0	106	70-143	
1,2-Dichlorobenzene	ug/kg	50	55.9	112	59-162	
1,2-Dichloroethane	ug/kg	50	48.5	97	69-135	
1,2-Dichloropropane	ug/kg	50	52.6	105	68-147	
1,3,5-Trimethylbenzene	ug/kg	50	56.4	113	68-138	
1.3-Dichlorobenzene	ug/kg	50	55.9	112	67-152	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 825 Warner Street 19-064

Pace Project No.: 2618256

LABORATORY CONTROL SAMPLE: 125800

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,3-Dichloropropane	ua/ka		53.1	106	67-143	
1,4-Dichlorobenzene	ug/kg	50	55.2	110	72-138	
2.2-Dichloropropane	ug/kg	50	52.8	106	56-162	
2-Butanone (MEK)	ug/kg	100	96.2J	96	52-163	
2-Chlorotoluene	ug/kg	50	55.8	112	69-142	
2-Hexanone	ug/kg	100	98.5	98	60-186	
4-Chlorotoluene	ug/kg	50	54.5	109	64-137	
4-Methyl-2-pentanone (MIBK)	ug/kg	100	100	100	80-129	
Acetone	ug/kg	100	87.1J	87	52-160	
Acrolein	ug/kg	100	83.4	83	42-183	
Acrylonitrile	ug/kg	200	182	91	63-133	
Benzene	ug/kg	50	49.1	98	70-141	
Bromobenzene	ug/kg	50	53.8	108	70-143	
Bromochloromethane	ug/kg	50	54.6	109	74-141	
Bromodichloromethane	ug/kg	50	57.4	115	68-125	
Bromoform	ug/kg	50	53.7	107	65-140	
Bromomethane	ug/kg	50	47.3	95	41-148	
Carbon disulfide	ug/kg	100	112	112	72-138	
Carbon tetrachloride	ug/kg	50	53.3	107	57-146	
Chlorobenzene	ug/kg	50	56.2	112	65-133	
Chloroethane	ug/kg	50	49.4	99	48-143	
Chloroform	ug/kg	50	50.6	101	72-138	
Chloromethane	ug/kg	50	39.8	80	41-147 v	2
cis-1,2-Dichloroethene	ug/kg	50	49.4	99	71-142	
cis-1,3-Dichloropropene	ug/kg	50	51.3	103	69-129	
Dibromochloromethane	ug/kg	50	52.1	104	64-122	
Dibromomethane	ug/kg	50	57.0	114	68-147	
Dichlorodifluoromethane	ug/kg	50	47.7	95	18-147	
Diisopropyl ether	ug/kg	50	46.0	92	62-144	
Ethylbenzene	ug/kg	50	54.4	109	70-143	
Isopropylbenzene (Cumene)	ug/kg	50	56.2	112	65-140	
m&p-Xylene	ug/kg	100	112	112	80-120	
Methyl-tert-butyl ether	ug/kg	100	104	104	80-126	
Methylene Chloride	ug/kg	50	48.7	97	71-136	
n-Butylbenzene	ug/kg	50	55.4	111	46-179	
n-Propylbenzene	ug/kg	50	54.7	109	65-150	
Naphthalene	ug/kg	50	57.5	115	47-167	
o-Xylene	ug/kg	50	56.3	113	70-141	
p-Isopropyltoluene	ug/kg	50	56.5	113	70-134	
sec-Butylbenzene	ug/kg	50	55.0	110	70-141	
Styrene	ug/kg	50	57.7	115	68-134	
tert-Butylbenzene	ug/kg	50	56.0	112	66-142	
Tetrachloroethene	ug/kg	50	53.3	107	59-144	
Toluene	ug/kg	50	52.2	104	62-142	
trans-1,2-Dichloroethene	ug/kg	50	50.9	102	71-138	
trans-1,3-Dichloropropene	ug/kg	50	52.7	105	68-131	
Trichloroethene	ug/kg	50	54.6	109	65-152	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 825 Warner Street 19-064

Pace Project No.: 2618256

LABORATORY CONTROL SAMPLE: 125800

			Spike	LCS	LCS	% Rec	
	Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Trichloroflu	oromethane	ug/kg	50	52.7	105	64-133	
Vinyl aceta	te	ug/kg	50	48.0	96	36-122	
Vinyl chlori	de	ug/kg	50	49.3	99	53-141	
Xylene (To	tal)	ug/kg	150	168	112	61-122	
1,2-Dichlor	oethane-d4 (S)	%.			111	69-133	
4-Bromoflu	orobenzene (S)	%.			110	77-124	
Dibromoflu	oromethane (S)	%.			111	73-114	
Toluene-d8	8 (S)	%.			104	85-109	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 125801				125802								
			MS	MSD								
		2618256001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,1,1,2-Tetrachloroethane	ug/kg	ND	3830	3830	5100	5010	133	131	30-131	2	26	M1
1,1,1-Trichloroethane	ug/kg	ND	3830	3830	4410	4360	115	114	42-146	1	25	
1,1,2,2-Tetrachloroethane	ug/kg	ND	3830	3830	4850	4810	127	126	25-144	1	18	
1,1,2-Trichloroethane	ug/kg	ND	3830	3830	4490	4720	117	123	52-130	5	26	
1,1-Dichloroethane	ug/kg	ND	3830	3830	4510	4330	118	113	52-145	4	24	
1,1-Dichloroethene	ug/kg	ND	3830	3830	4340	4380	113	114	39-154	1	27	
1,1-Dichloropropene	ug/kg	ND	3830	3830	4350	4290	114	112	45-137	1	26	
1,2,3-Trichlorobenzene	ug/kg	ND	3830	3830	4930	4960	129	129	32-136	1	21	
1,2,3-Trichloropropane	ug/kg	ND	3830	3830	4690	4580	122	120	26-154	2	34	
1,2,4-Trichlorobenzene	ug/kg	ND	3830	3830	4910	4890	128	128	21-130	0	28	
1,2,4-Trimethylbenzene	ug/kg	ND	3830	3830	4350	4280	114	112	13-152	2	31	
1,2-Dibromo-3- chloropropane	ug/kg	ND	3830	3830	4430	4520	116	118	42-120	2	81	
1,2-Dibromoethane (EDB)	ug/kg	ND	3830	3830	4490	4600	117	120	39-139	2	29	
1,2-Dichlorobenzene	ug/kg	ND	3830	3830	4840	4850	126	127	10-182	0	64	
1,2-Dichloroethane	ug/kg	ND	3830	3830	4210	4260	110	111	58-118	1	23	
1,2-Dichloropropane	ug/kg	ND	3830	3830	4500	4530	117	118	51-136	1	24	
1,3,5-Trimethylbenzene	ug/kg	ND	3830	3830	4880	4780	127	125	22-146	2	31	
1,3-Dichlorobenzene	ug/kg	ND	3830	3830	4850	4740	127	124	15-161	2	42	
1,3-Dichloropropane	ug/kg	ND	3830	3830	4670	4720	122	123	45-134	1	27	
1,4-Dichlorobenzene	ug/kg	ND	3830	3830	4780	4740	125	124	15-164	1	36	
2,2-Dichloropropane	ug/kg	ND	3830	3830	4630	4510	121	118	29-149	2	27	
2-Butanone (MEK)	ug/kg	ND	7660	7660	7690	7780	100	102	22-158	1	30	
2-Chlorotoluene	ug/kg	ND	3830	3830	4620	4550	121	119	16-156	2	33	
2-Hexanone	ug/kg	ND	7660	7660	8300	8800	108	115	10-198	6	50	
4-Chlorotoluene	ug/kg	ND	3830	3830	4580	4570	119	119	11-151	0	35	
4-Methyl-2-pentanone (MIBK)	ug/kg	ND	7660	7660	8310	8560	108	112	29-135	3	33	
Acetone	ug/kg	ND	7660	7660	7150J	6810J	93	89	59-136		27	
Acrolein	ug/kg	ND	7660	7660	11300	11200	147	146	23-177	1	22	
Acrylonitrile	ug/kg	ND	15300	15300	14900	14600	97	95	38-130	2	23	
Benzene	ug/kg	ND	3830	3830	4140	4010	108	105	42-140	3	25	
Bromobenzene	ug/kg	ND	3830	3830	4690	4590	122	120	18-156	2	34	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 825 Warner Street 19-064

Pace Project No.: 2618256

MATRIX SPIKE & MATRIX SI	PIKE DUPL	ICATE: 1258	01		125802							
			MS	MSD								
		2618256001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Bromochloromethane	ug/kg	 ND	3830	3830	4270	4240	112	111	59-127	1	22	
Bromodichloromethane	ug/kg	ND	3830	3830	4640	4630	121	121	39-123	0	24	
Bromoform	ug/kg	ND	3830	3830	4330	4400	113	115	30-136	1	22	
Bromomethane	ug/kg	ND	3830	3830	2070	2150	54	56	10-164	4	31	
Carbon disulfide	ug/kg	ND	7660	7660	8110	8110	106	106	55-135	0	24	
Carbon tetrachloride	ug/kg	ND	3830	3830	4370	4360	114	114	33-136	0	27	
Chlorobenzene	ug/kg	ND	3830	3830	4570	4610	119	120	28-144	1	31	
Chloroethane	ug/kg	ND	3830	3830	1840	1820	48	47	10-163	1	30	
Chloroform	ug/kg	ND	3830	3830	4290	4150	112	108	52-131	3	23	
Chloromethane	ug/kg	ND	3830	3830	3620	3620	95	94	28-149	0	28	v2
cis-1,2-Dichloroethene	ug/kg	ND	3830	3830	4210	4080	110	106	50-134	3	23	
cis-1,3-Dichloropropene	ug/kg	ND	3830	3830	4270	4380	112	114	39-125	2	28	
Dibromochloromethane	ug/kg	ND	3830	3830	4150	4120	108	108	32-118	1	29	
Dibromomethane	ug/kg	ND	3830	3830	4840	4970	126	130	50-133	3	22	
Dichlorodifluoromethane	ug/kg	ND	3830	3830	4010	3990	105	104	10-158	1	44	
Diisopropyl ether	ug/kg	ND	3830	3830	4200	4180	110	109	44-135	1	29	
Ethylbenzene	ug/kg	ND	3830	3830	4560	4530	119	118	13-164	1	33	
Isopropylbenzene	ug/kg	ND	3830	3830	4840	4860	126	127	13-156	0	33	
(Cumene)			-		00.40	0040	400	100	04.400		400	
m&p-Xylene	ug/kg	ND	7660	7660	9340	9310	122	122	34-120	0	100	M1
Methyl-tert-butyl ether	ug/kg	ND	7660	7660	8600	8510	112	111	73-131	1	36	
Methylene Chloride	ug/kg	ND	3830	3830	4130	4070	108	106	53-138	1	26	
n-Butyibenzene	ug/kg	ND	3830	3830	4530	4460	118	116	21-161	2	34	
n-Propyidenzene	ug/kg	ND	3830	3830	4600	4530	120	118	16-158	2	34	
Naphthalene	ug/kg	ND	3830	3830	4980	5100	130	133	31-150	3	30	
o-Xylene	ug/kg	ND	3830	3830	4830	4840	126	126	13-160	0	29	
p-isopropyitoluene	ug/kg	ND	3830	3830	4340	4290	113	112	10-164	1	33	
sec-Butylbenzene	ug/kg	ND	3830	3830	4380	4280	114	112	12-164	2	34	
Styrene	ug/kg	ND	3830	3830	5130	5030	134	131	16-151	2	33	
tert-Butylbenzene	ug/kg	ND	3830	3830	4200	4090	110	107	10-160	3	33	
Tetrachloroethene	ug/kg	ND	3830	3830	4490	4460	117	116	33-141	1	32	
	ug/kg	ND	3830	3830	4330	4410	113	115	32-145	2	31	
trans-1,2-Dichloroethene	ug/kg	ND	3830	3830	4360	4300	114	112	43-144	1	26	
trans-1,3-Dichloropropene	ug/kg	ND	3830	3830	4210	4340	110	113	30-130	3	33	
	ug/kg	ND	3830	3830	4110	4190	107	109	16-172	2	30	
Irichlorofluoromethane	ug/kg	ND	3830	3830	3860	3860	101	101	14-149	0	32	
Vinyl acetate	ug/kg	ND	3830	3830	4060	4080	106	107	10-120	1	/4	
Vinyl chloride	ug/kg	ND	3830	3830	4100	4100	107	107	40-140	0	28	
Xylene (Total)	ug/kg	ND	11500	11500	14200	14200	123	123	19-120	0	28	MS
1,2-Dichloroethane-d4 (S)	%.						111	110	69-133			
4-Bromofluorobenzene (S)	%.						114	110	77-124			
Dibromofluoromethane (S)	%.						108	105	73-114			
Toluene-d8 (S)	%.						104	104	85-109			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project:	825 Warner S	treet 19-064					
Pace Project No.:	2618256						
OC Databi	20174		Analysia Math		A 9260D		
QC Batch:	28174			100: EF	A 8260B		
QC Batch Method:	EPA 8260B		Analysis Dese	cription: 82	60B MSV		
Associated Lab Sam	ples: 26182	256004, 2618256005, 26	618256006, 26182	256007			
METHOD BLANK:	127336		Matrix:	Water			
Associated Lab Sam	ples: 26182	256004. 2618256005. 26	318256006, 26182	256007			
		,,	Blank	Reporting			
Param	eter	Units	Result	Limit	Analyzed	Qualifiers	
1,1,1,2-Tetrachloroet	thane	ug/L	ND	1.0	05/13/19 18:25		
1,1,1-Trichloroethane	е	ug/L	ND	2.0	05/13/19 18:25		
1,1,2,2-Tetrachloroet	thane	ug/L	ND	2.0	05/13/19 18:25		
1,1,2-Trichloroethane	e	ug/L	ND	2.0	05/13/19 18:25		
1,1-Dichloroethane		ug/L	ND	2.0	05/13/19 18:25		
1,1-Dichloroethene		ug/L	ND	2.0	05/13/19 18:25		
1,1-Dichloropropene		ug/L	ND	1.0	05/13/19 18:25		
1,2,3-Trichlorobenze	ene	ug/L	ND	1.0	05/13/19 18:25		
1,2,3-Trichloropropa	ne	ug/L	ND	1.0	05/13/19 18:25		
1,2,4-Trichlorobenze	ene	ug/L	ND	1.0	05/13/19 18:25		
1,2-Dibromo-3-chlore	opropane	ug/L	ND	2.0	05/13/19 18:25		
1,2-Dibromoethane ((EDB)	ug/L	ND	2.0	05/13/19 18:25		
1,2-Dichlorobenzene	;	ug/L	ND	10.0	05/13/19 18:25		
1,2-Dichloroethane		ug/L	ND	2.0	05/13/19 18:25		
1,2-Dichloropropane		ug/L	ND	2.0	05/13/19 18:25		
1,3-Dichlorobenzene	9	ug/L	ND	10.0	05/13/19 18:25		
1,3-Dichloropropane		ug/L	ND	1.0	05/13/19 18:25		
1,4-Dichlorobenzene	9	ug/L	ND	10.0	05/13/19 18:25		
2,2-Dichloropropane		ug/L	ND	1.0	05/13/19 18:25		
2-Butanone (MEK)		ug/L	ND	5.0	05/13/19 18:25		
2-Chlorotoluene		ug/L	ND	1.0	05/13/19 18:25		
2-Hexanone		ug/L	ND	5.0	05/13/19 18:25		
4-Chlorotoluene		ug/L	ND	1.0	05/13/19 18:25		
4-Methyl-2-pentanon	ne (MIBK)	ug/L	ND	5.0	05/13/19 18:25		
Acetone		ug/L	ND	25.0	05/13/19 18:25		
Benzene		ug/L	ND	2.0	05/13/19 18:25		
Bromobenzene		ug/L	ND	1.0	05/13/19 18:25		
Bromochloromethan	е	ug/L	ND	1.0	05/13/19 18:25		
Bromodichlorometha	ane	ug/L	ND	10.0	05/13/19 18:25		
Bromoform		ug/L	ND	10.0	05/13/19 18:25		
Bromomethane		ug/L	ND	10.0	05/13/19 18:25		
Carbon tetrachloride		ug/L	ND	2.0	05/13/19 18:25		
Chlorobenzene		ug/L	ND	10.0	05/13/19 18:25		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

ND

ND

ND

ND

ND

ND

ND

ND

5.0 05/13/19 18:25

2.0 05/13/19 18:25

10.0 05/13/19 18:25

1.0 05/13/19 18:25

2.0 05/13/19 18:25

10.0 05/13/19 18:25

1.0 05/13/19 18:25

1.0 05/13/19 18:25

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

REPORT OF LABORATORY ANALYSIS

Chloroethane

Chloromethane

Dibromomethane

cis-1,2-Dichloroethene

cis-1,3-Dichloropropene

Dibromochloromethane

Dichlorodifluoromethane

Chloroform

Qualifiers

QUALITY CONTROL DATA

Project: 825 Warner Street 19-064 Pace Project No · 2619256

Pace Project No 2018230					
METHOD BLANK: 127336		Matrix:	Water		
Associated Lab Samples: 2618256	004, 2618256005, 26	618256006, 26182	56007		
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	
Diisopropyl ether	ug/L	ND	10.0	05/13/19 18:25	
Ethylbenzene	ug/L	ND	2.0	05/13/19 18:25	
Hexachloro-1,3-butadiene	ug/L	ND	10.0	05/13/19 18:25	
m&p-Xylene	ug/L	ND	1.0	05/13/19 18:25	
Methyl-tert-butyl ether	ug/L	ND	10.0	05/13/19 18:25	
Methylene Chloride	ug/L	ND	5.0	05/13/19 18:25	
Naphthalene	ug/L	ND	1.0	05/13/19 18:25	
o-Xylene	ug/L	ND	1.0	05/13/19 18:25	
p-Isopropyltoluene	ug/L	ND	1.0	05/13/19 18:25	
Styrene	ug/L	ND	1.0	05/13/19 18:25	
Tetrachloroethene	ug/L	ND	2.0	05/13/19 18:25	
Toluene	ug/L	ND	2.0	05/13/19 18:25	
trans-1,2-Dichloroethene	ug/L	ND	2.0	05/13/19 18:25	
trans-1,3-Dichloropropene	ug/L	ND	2.0	05/13/19 18:25	
Trichloroethene	ug/L	ND	2.0	05/13/19 18:25	
Trichlorofluoromethane	ug/L	ND	1.0	05/13/19 18:25	

	- J				
trans-1,3-Dichloropropene	ug/L	ND	2.0	05/13/19 18:25	
Trichloroethene	ug/L	ND	2.0	05/13/19 18:25	
Trichlorofluoromethane	ug/L	ND	1.0	05/13/19 18:25	
Vinyl acetate	ug/L	ND	2.0	05/13/19 18:25	
Vinyl chloride	ug/L	ND	10.0	05/13/19 18:25	
Xylene (Total)	ug/L	ND	2.0	05/13/19 18:25	
1,2-Dichloroethane-d4 (S)	%.	97	81-119	05/13/19 18:25	
4-Bromofluorobenzene (S)	%.	87	82-120	05/13/19 18:25	
Dibromofluoromethane (S)	%.	103	82-114	05/13/19 18:25	
Toluene-d8 (S)	%.	87	82-109	05/13/19 18:25	

LABORATORY CONTROL SAMPLE: 127337

	121001					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L		53.3	107	68-137	
1,1,1-Trichloroethane	ug/L	50	58.2	116	72-134	
1,1,2,2-Tetrachloroethane	ug/L	50	45.3	91	51-158	
1,1,2-Trichloroethane	ug/L	50	54.7	109	78-131	
1,1-Dichloroethane	ug/L	50	55.1	110	69-151	
1,1-Dichloroethene	ug/L	50	52.2	104	64-158	
1,1-Dichloropropene	ug/L	50	53.1	106	70-133	
1,2,3-Trichlorobenzene	ug/L	50	53.5	107	73-130	
1,2,3-Trichloropropane	ug/L	50	39.3	79	78-133	
1,2,4-Trichlorobenzene	ug/L	50	49.9	100	51-163	
1,2-Dibromo-3-chloropropane	ug/L	50	41.8	84	58-124	
1,2-Dibromoethane (EDB)	ug/L	50	54.0	108	71-134	
1,2-Dichlorobenzene	ug/L	50	51.6	103	70-135	
1,2-Dichloroethane	ug/L	50	53.7	107	72-129	
1,2-Dichloropropane	ug/L	50	50.1	100	64-135	
1,3-Dichlorobenzene	ug/L	50	51.0	102	71-134	
1,3-Dichloropropane	ug/L	50	55.8	112	70-140	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 825 Warner Street 19-064

Pace Project No.: 2618256

LABORATORY CONTROL SAMPLE: 127337

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1.4-Dichlorobenzene	ua/L		49.1	98	70-131	
2.2-Dichloropropane	ua/L	50	55.0	110	34-170	
2-Butanone (MEK)	ua/L	100	73.1	73	52-143	
2-Chlorotoluene	ug/L	50	48.6	97	77-128	
2-Hexanone	ug/L	100	76.5	76	61-136	
4-Chlorotoluene	ua/L	50	49.5	99	79-126	
4-Methyl-2-pentanone (MIBK)	ug/l	100	81.0	81	71-129	
Acetone	ug/L	100	76.2	76	48-224	
Benzene	ug/L	50	54.5	109	68-132	
Bromobenzene	ug/L	50	45.5	.00	75-122	
Bromochloromethane	ug/L	50	64 1	128	73-133	
Bromodichloromethane	ug/L	50	48.0	96	67-121	
Bromoform	ug/L	50	49.9	100	57-125	
Bromomethane	ug/L	50	42.1	84	35-156	
Carbon tetrachloride	ug/L	50	56.9	114	66-122	
Chlorobenzene	ug/L	50	48 8	QR	71-126	
Chloroethane	ug/L	50	40.0	20 21	43-143	
Chloroform	ug/L	50		111	71_136	
Chloromethane	ug/L	50	40 5	25	47-100	
cis-1 2-Dichloroethene	ug/L	50	72.J 57 5	115	74_131	
cis-1 3-Dichloropropene	ug/L	50	۵۲.5 ۸7 7	05	78_120	
Dibromochloromethane	ug/L	50	52.6	105	65-115	
Dibromomethane	ug/L	50	50.1	105	70-120	
Dichlorodifluoromothano	ug/L	50	54.6	100	20 124	
	ug/L	50	J4.0 /0.2	08	29-124 70-130	
Ethylbonzono	ug/L	50	49.2	90 07	68 120	
Hovachloro 1.3 butadiono	ug/L	50	40.0	111	59 142	
	ug/L	100	101	101	67 137	
Mathyl tort butyl other	ug/L	100	101	101	50 120	
Methylene Chloride	ug/L	50	54.5	100	59-130 61 147	
Nanhthalana	ug/L	50	04.5 المرا	04	18-147	
	ug/L	50	47.1 52.1	94 106	50 1/1	
n Isopropyltolyopo	ug/L	50	33. I 45 G	01	52-141	
Sturana	ug/L	50	40.0 56 /	91 110	JO-137 77 100	
Tetrachloroethene	ug/L	50	50.4	110	11-120 51_130	
Toluana	ug/L	50	51 /	103	60-133	
trans_1.2-Dichloroethono	ug/L	50	57.6	103	60 144	
trans-1.2-Dichloropropopo	ug/L	50	57.0 47.5	115	7/ 100	
Trichloroothono	ug/L	50	47.0	90	73 106	
Trichlorofluoromethana	ug/L	50	40.0	92	10-120	
Vinul acotato	ug/L	50	49.1 37 G	90 75	52 1/1	
Vinyi ablarida	ug/L	50	31.0	10	52-14	
Viligi Chionae	ug/L	50	45.3	91	JU-133	
Aylene (10tal)	ug/L	150	154	103	10-132	
1,2-DICHIOROETHANE-04 (S)	%. 0/			98	81-119	
4-Divitionuolopenzene (S)	70. 0/			90	02-120	
	%. 0/			110	82-114	
Ioluene-ao (S)	%.			86	82-109	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 825 Warner Street 19-064

Pace Project No.: 2618256

MATRIX SPIKE & MATRIX SP	PIKE DUPL	ICATE: 1268	90		126891						
			MS	MSD							
		2618256004	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD Qual
1,1,1,2-Tetrachloroethane	ug/L	ND	50	50	71.3	32.2	143	64	68-137	76	11 M1,R1
1,1,1-Trichloroethane	ug/L	ND	50	50	86.1	42.3	172	85	66-142	68	11 M1,R1
1,1,2,2-Tetrachloroethane	ug/L	ND	50	50	58.3	26.7	117	53	39-171	74	13 R1
1,1,2-Trichloroethane	ug/L	ND	50	50	73.3	32.5	147	65	73-136	77	12 M1,R1
1,1-Dichloroethane	ug/L	ND	50	50	74.6	37.4	149	75	66-155	66	15 R1
1,1-Dichloroethene	ug/L	ND	50	50	80.6	40.6	161	81	33-181	66	34 R1
1,1-Dichloropropene	ug/L	ND	50	50	73.1	39.5	146	79	70-133	60	12 M1,R1
1,2,3-Trichlorobenzene	ug/L	ND	50	50	59.5	30.8	119	62	73-130	64	22 M1,R1
1,2,3-Trichloropropane	ug/L	ND	50	50	47.9	21.8	96	44	78-133	75	14 M1,R1
1,2,4-Trichlorobenzene	ug/L	ND	50	50	55.7	28.7	111	57	44-164	64	13 R1
1,2-Dibromo-3- chloropropane	ug/L	ND	50	50	51.4	22.6	103	45	58-124	78	15 M1,R1
1,2-Dibromoethane (EDB)	ug/L	ND	50	50	69.5	31.9	139	64	71-134	74	12 M1,R1
1,2-Dichlorobenzene	ug/L	ND	50	50	64.1	30.6	128	61	69-135	71	10 M1,R1
1,2-Dichloroethane	ug/L	ND	50	50	69.8	34.0	140	68	36-159	69	10 R1
1,2-Dichloropropane	ug/L	ND	50	50	67.8	30.8	136	62	68-132	75	11 M1,R1
1,3-Dichlorobenzene	ug/L	ND	50	50	63.1	30.9	126	62	68-135	68	10 M1,R1
1,3-Dichloropropane	ug/L	ND	50	50	73.0	33.2	146	66	70-138	75	10 M1,R1
1,4-Dichlorobenzene	ug/L	ND	50	50	58.0	29.1	116	58	49-153	66	9 R1
2,2-Dichloropropane	ug/L	ND	50	50	66.0	32.5	132	65	34-170	68	9 R1
2-Butanone (MEK)	ug/L	ND	100	100	96.1	48.9	96	49	10-189	65	23 R1
2-Chlorotoluene	ug/L	ND	50	50	63.7	30.7	127	61	77-128	70	10 M1,R1
2-Hexanone	ug/L	ND	100	100	94.6	43.0	95	43	40-135	75	18 R1
4-Chlorotoluene	ug/L	ND	50	50	61.7	30.6	123	61	79-126	67	10 M1,R1
4-Methyl-2-pentanone (MIBK)	ug/L	ND	100	100	107	47.5	107	48	30-177	77	10 R1
Acetone	ug/L	ND	100	100	94.0	43.9	92	42	44-223	73	14 M1,R1
Benzene	ug/L	ND	50	50	73.5	36.4	147	73	66-139	68	10 M1,R1
Bromobenzene	ug/L	ND	50	50	58.0	28.0	116	56	75-122	70	12 M1,R1
Bromochloromethane	ug/L	ND	50	50	83.1	40.7	166	81	73-133	68	13 M1,R1
Bromodichloromethane	ug/L	ND	50	50	66.9	30.9	134	62	57-120	74	13 M1,R1
Bromoform	ug/L	ND	50	50	66.2	29.7	132	59	48-128	76	13 M1,R1
Bromomethane	ug/L	ND	50	50	60.7	32.5	121	65	10-187	61	32 R1
Carbon tetrachloride	ug/L	ND	50	50	88.7	44.8	177	90	58-127	66	14 M1,R1
Chlorobenzene	ug/L	ND	50	50	63.4	31.2	127	62	63-137	68	10 M1,R1
Chloroethane	ug/L	ND	50	50	58.9	30.9	118	62	52-146	62	16 R1
Chloroform	ug/L	ND	50	50	74.4	36.7	149	73	74-137	68	9 M1,R1
Chloromethane	ug/L	ND	50	50	58.6	32.1	117	64	41-127	58	10 R1
cis-1,2-Dichloroethene	ug/L	ND	50	50	77.2	39.7	154	79	71-138	64	16 M1,R1
cis-1,3-Dichloropropene	ug/L	ND	50	50	60.9	28.0	122	56	32-145	74	12 R1
Dibromochloromethane	ug/L	ND	50	50	72.1	32.2	144	64	52-116	76	13 M1,R1
Dibromomethane	ug/L	ND	50	50	76.5	37.2	153	74	79-129	69	14 M1,R1
Dichlorodifluoromethane	ug/L	ND	50	50	98.4	52.3	197	105	36-126	61	15 M1,R1
Diisopropyl ether	ug/L	ND	50	50	65.2	30.7	130	61	70-130	72	20 M1,R1
Ethylbenzene	ug/L	ND	50	50	64.1	31.4	128	62	31-174	68	10 R1
Hexachloro-1,3-butadiene	ug/L	ND	50	50	71.2	38.6	142	77	58-142	59	11 R1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 825 Warner Street 19-064

Pace Project No.: 2618256

MATRIX SPIKE & MATRIX SP	126891											
			MS	MSD								
		2618256004	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
m&p-Xylene	ug/L	ND	100	100	133	64.3	132	64	27-179	70	10	R1
Methyl-tert-butyl ether	ug/L	ND	100	100	143	65.6	143	65	38-120	74	12	M1,R1
Methylene Chloride	ug/L	ND	50	50	70.2	36.0	140	72	61-146	64	15	R1
Naphthalene	ug/L	ND	50	50	55.1	27.8	110	56	25-159	66	14	R1
o-Xylene	ug/L	ND	50	50	70.0	33.4	139	66	52-141	71	65	R1
p-Isopropyltoluene	ug/L	ND	50	50	57.3	28.7	115	57	59-134	67	9	M1,R1
Styrene	ug/L	ND	50	50	70.7	33.0	141	66	77-128	73	14	M1,R1
Tetrachloroethene	ug/L	ND	50	50	77.6	39.4	155	79	36-155	65	14	R1
Toluene	ug/L	ND	50	50	70.5	34.1	140	68	52-146	70	11	R1
trans-1,2-Dichloroethene	ug/L	ND	50	50	76.3	39.9	153	80	61-152	63	14	M1,R1
trans-1,3-Dichloropropene	ug/L	ND	50	50	60.7	27.8	121	56	37-146	74	12	R1
Trichloroethene	ug/L	ND	50	50	61.0	30.6	122	61	61-141	66	12	R1
Trichlorofluoromethane	ug/L	ND	50	50	85.0	44.1	170	88	51-141	63	13	M1,R1
Vinyl acetate	ug/L	ND	50	50	63.2	39.5	126	79	52-141	46	14	R1
Vinyl chloride	ug/L	ND	50	50	69.3	37.1	139	74	22-156	60	26	R1
Xylene (Total)	ug/L	ND	150	150	203	97.7	135	65	78-132	70	7	RS
1,2-Dichloroethane-d4 (S)	%.						95	98	81-119			
4-Bromofluorobenzene (S)	%.						90	92	82-120			
Dibromofluoromethane (S)	%.						109	108	82-114			
Toluene-d8 (S)	%.						87	85	82-109			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

825 Warner Street 19-064 Project:

+ NI. 2610256

Pace Project No.: 2618256					
QC Batch: 28011		Analysis Meth	nod: EF	PA 8270D	
QC Batch Method: EPA 3546		Analysis Des	cription: 82	70D MSSV PAH	
Associated Lab Samples: 26182560	02				
METHOD BLANK: 125947		Matrix:	Solid		
Associated Lab Samples: 26182560	02				
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1-Methylnaphthalene	ug/kg	ND	327	05/09/19 12:25	
2-Methylnaphthalene	ug/kg	ND	327	05/09/19 12:25	
Acenaphthene	ug/kg	ND	327	05/09/19 12:25	
Acenaphthylene	ug/kg	ND	327	05/09/19 12:25	
Anthracene	ug/kg	ND	327	05/09/19 12:25	
Benzo(a)anthracene	ug/kg	ND	327	05/09/19 12:25	
Benzo(a)pyrene	ug/kg	ND	327	05/09/19 12:25	
Benzo(b)fluoranthene	ug/kg	ND	327	05/09/19 12:25	
Benzo(g,h,i)perylene	ug/kg	ND	327	05/09/19 12:25	
Benzo(k)fluoranthene	ug/kg	ND	327	05/09/19 12:25	
Chrysene	ug/kg	ND	327	05/09/19 12:25	
Dibenz(a,h)anthracene	ug/kg	ND	327	05/09/19 12:25	
Fluoranthene	ug/kg	ND	327	05/09/19 12:25	
Fluorene	ug/kg	ND	327	05/09/19 12:25	
Indeno(1,2,3-cd)pyrene	ug/kg	ND	327	05/09/19 12:25	
Naphthalene	ug/kg	ND	327	05/09/19 12:25	

ND

ND

67

36

79

327 05/09/19 12:25

327 05/09/19 12:25

15-126 05/09/19 12:25

11-106 05/09/19 12:25

11-156 05/09/19 12:25

125048

ug/kg

ug/kg

%.

%.

%.

Phenanthrene

2-Fluorobiphenyl (S)

Nitrobenzene-d5 (S)

p-Terphenyl-d14 (S)

Pyrene

LADURATURT CUNTRUL SAMIFLE.	120940					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1-Methylnaphthalene	ug/kg	2640	1770	67	42-109	
2-Methylnaphthalene	ug/kg	2640	1830	69	42-106	
Acenaphthene	ug/kg	2640	1960	74	50-117	
Acenaphthylene	ug/kg	2640	1880	71	46-124	
Anthracene	ug/kg	2640	2170	82	57-122	
Benzo(a)anthracene	ug/kg	2640	2150	82	49-116	
Benzo(a)pyrene	ug/kg	2640	2070	79	46-121	
Benzo(b)fluoranthene	ug/kg	2640	1970	75	46-127	
Benzo(g,h,i)perylene	ug/kg	2640	1990	76	49-128	
Benzo(k)fluoranthene	ug/kg	2640	2340	89	52-123	
Chrysene	ug/kg	2640	2150	81	55-116	
Dibenz(a,h)anthracene	ug/kg	2640	2010	76	48-129	
Fluoranthene	ug/kg	2640	2190	83	54-124	
Fluorene	ug/kg	2640	1880	71	51-122	
Indeno(1,2,3-cd)pyrene	ug/kg	2640	1990	76	48-131	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 825 Warner Street 19-064

Pace Project No.: 2618256

LABORATORY CONTROL SAMPLE:	125948					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Naphthalene	ug/kg		1680	64	44-107	
Phenanthrene	ug/kg	2640	2070	79	55-120	
Pyrene	ug/kg	2640	1960	74	58-126	
2-Fluorobiphenyl (S)	%.			74	15-126	
Nitrobenzene-d5 (S)	%.			64	11-106	
p-Terphenyl-d14 (S)	%.			88	11-156	

MATRIX SPIKE SAMPLE:	125949						
		2618256002	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1-Methylnaphthalene	ug/kg	ND	3260	6390	179	10-130	M6
2-Methylnaphthalene	ug/kg	ND	3260	6510	179	10-126	M6
Acenaphthene	ug/kg	ND	3260	7990	231	10-148	M6
Acenaphthylene	ug/kg	ND	3260	6740	199	10-152	M6
Anthracene	ug/kg	ND	3260	15600	455	10-159	M6
Benzo(a)anthracene	ug/kg	ND	3260	23100	670	10-148	M6
Benzo(a)pyrene	ug/kg	ND	3260	22300	594	10-156	M6
Benzo(b)fluoranthene	ug/kg	ND	3260	21900	576	10-156	M6
Benzo(g,h,i)perylene	ug/kg	ND	3260	16400	423	10-153	M6
Benzo(k)fluoranthene	ug/kg	ND	3260	19000	498	10-159	M6
Chrysene	ug/kg	ND	3260	25000	730	10-151	M6
Dibenz(a,h)anthracene	ug/kg	ND	3260	6750	178	10-156	M6
Fluoranthene	ug/kg	6570	3260	61000	1670	10-157	M6
Fluorene	ug/kg	ND	3260	14500	420	10-151	M6
Indeno(1,2,3-cd)pyrene	ug/kg	ND	3260	13000	336	10-160	M6
Naphthalene	ug/kg	ND	3260	5770	153	10-128	M6
Phenanthrene	ug/kg	6050	3260	78300	2210	10-153	M6
Pyrene	ug/kg	5580	3260	49500	1340	10-153	M6
2-Fluorobiphenyl (S)	%.				80	15-126	
Nitrobenzene-d5 (S)	%.				55	11-106	
p-Terphenyl-d14 (S)	%.				108	11-156	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 825 Warner Street 19-064

_: 2610256

Pace Project No.: 2618256					
QC Batch: 28310		Analysis Meth	nod: EF	PA 8270D	
QC Batch Method: EPA 3546		Analysis Desc	cription: 82	70D MSSV PAH	
Associated Lab Samples: 2618256	6001				
METHOD BLANK: 127479		Matrix:	Solid		
Associated Lab Samples: 2618256	6001				
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1-Methylnaphthalene	ug/kg	ND	330	05/13/19 22:59	
2-Methylnaphthalene	ug/kg	ND	330	05/13/19 22:59	
Acenaphthene	ug/kg	ND	330	05/13/19 22:59	
Acenaphthylene	ug/kg	ND	330	05/13/19 22:59	
Anthracene	ug/kg	ND	330	05/13/19 22:59	
Benzo(a)anthracene	ug/kg	ND	330	05/13/19 22:59	
Benzo(a)pyrene	ug/kg	ND	330	05/13/19 22:59	
Benzo(b)fluoranthene	ug/kg	ND	330	05/13/19 22:59	
Benzo(g,h,i)perylene	ug/kg	ND	330	05/13/19 22:59	
Benzo(k)fluoranthene	ug/kg	ND	330	05/13/19 22:59	
Chrysene	ug/kg	ND	330	05/13/19 22:59	
Dibenz(a,h)anthracene	ug/kg	ND	330	05/13/19 22:59	
Fluoranthene	ug/kg	ND	330	05/13/19 22:59	

ug/kg	ND	330	05/13/19 22:59
ug/kg	ND	330	05/13/19 22:59
ug/kg	ND	330	05/13/19 22:59
ug/kg	ND	330	05/13/19 22:59
ug/kg	ND	330	05/13/19 22:59
%.	80	15-126	05/13/19 22:59
%.	71	11-106	05/13/19 22:59
%.	71	11-156	05/13/19 22:59
	ug/kg ug/kg ug/kg ug/kg %. %. %.	ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND %. 80 %. 71 %. 71	ug/kg ND 330 %. 80 15-126 %. 71 11-106 %. 71 11-156

ABORATORY	CONTROL	SAMPLE	127480

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1-Methylnaphthalene	ug/kg	2660	1670	63	42-109	
2-Methylnaphthalene	ug/kg	2660	1700	64	42-106	
Acenaphthene	ug/kg	2660	1960	74	50-117	
Acenaphthylene	ug/kg	2660	2090	79	46-124	
Anthracene	ug/kg	2660	2000	75	57-122	
Benzo(a)anthracene	ug/kg	2660	2010	76	49-116	
Benzo(a)pyrene	ug/kg	2660	2000	75	46-121	
Benzo(b)fluoranthene	ug/kg	2660	1740	65	46-127	
Benzo(g,h,i)perylene	ug/kg	2660	1820	68	49-128	
Benzo(k)fluoranthene	ug/kg	2660	2200	83	52-123	
Chrysene	ug/kg	2660	2100	79	55-116	
Dibenz(a,h)anthracene	ug/kg	2660	1820	68	48-129	
Fluoranthene	ug/kg	2660	2100	79	54-124	
Fluorene	ug/kg	2660	2040	77	51-122	
Indeno(1,2,3-cd)pyrene	ug/kg	2660	1820	69	48-131	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 825 Warner Street 19-064

Pace Project No.: 2618256

LABORATORY CONTROL SAMPLE:	127480					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Naphthalene	ug/kg		1770	67	44-107	
Phenanthrene	ug/kg	2660	1990	75	55-120	
Pyrene	ug/kg	2660	1750	66	58-126	
2-Fluorobiphenyl (S)	%.			77	15-126	
Nitrobenzene-d5 (S)	%.			61	11-106	
p-Terphenyl-d14 (S)	%.			73	11-156	

MATRIX SPIKE SAMPLE:	127481						
		2618256001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1-Methylnaphthalene	ug/kg	ND	3030	2130	70	10-130	
2-Methylnaphthalene	ug/kg	ND	3030	2020	67	10-126	
Acenaphthene	ug/kg	ND	3030	2240	74	10-148	
Acenaphthylene	ug/kg	ND	3030	2250	74	10-152	
Anthracene	ug/kg	ND	3030	2300	75	10-159	
Benzo(a)anthracene	ug/kg	ND	3030	2260	75	10-148	
Benzo(a)pyrene	ug/kg	ND	3030	2300	74	10-156	
Benzo(b)fluoranthene	ug/kg	ND	3030	2420	78	10-156	
Benzo(g,h,i)perylene	ug/kg	ND	3030	2110	68	10-153	
Benzo(k)fluoranthene	ug/kg	ND	3030	2430	80	10-159	
Chrysene	ug/kg	ND	3030	2310	76	10-151	
Dibenz(a,h)anthracene	ug/kg	ND	3030	2020	67	10-156	
Fluoranthene	ug/kg	ND	3030	2610	81	10-157	
Fluorene	ug/kg	ND	3030	2250	74	10-151	
Indeno(1,2,3-cd)pyrene	ug/kg	ND	3030	2020	67	10-160	
Naphthalene	ug/kg	ND	3030	2190	72	10-128	
Phenanthrene	ug/kg	ND	3030	2310	72	10-153	
Pyrene	ug/kg	ND	3030	2010	62	10-153	
2-Fluorobiphenyl (S)	%.				78	15-126	
Nitrobenzene-d5 (S)	%.				69	11-106	
p-Terphenyl-d14 (S)	%.				70	11-156	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 825 Warner Street 19-064

Pace Project No.: 2618256

QC Batch:	28008	Analysis Met	hod:	EPA 8270D		
QC Batch Method:	EPA 3510C	Analysis Des	cription:	8270D MSSV PAH		
Associated Lab Samp	oles: 2618256005, 2618256006					
METHOD BLANK: 1	125937	Matrix:	Water			
Associated Lab Samp	oles: 2618256005, 2618256006					
		Blank	Reporting			
Deneme	tan Ilmita	Desult	I imait	امع ما با مع ما	Qualifiana	

Parameter	Units	Result	Limit	Analyzed	Qualifiers
1-Methylnaphthalene	ug/L	ND	10.0	05/08/19 22:42	
2-Methylnaphthalene	ug/L	ND	10.0	05/08/19 22:42	
Acenaphthene	ug/L	ND	10.0	05/08/19 22:42	
Acenaphthylene	ug/L	ND	10.0	05/08/19 22:42	
Anthracene	ug/L	ND	10.0	05/08/19 22:42	
Benzo(a)anthracene	ug/L	ND	10.0	05/08/19 22:42	
Benzo(a)pyrene	ug/L	ND	10.0	05/08/19 22:42	
Benzo(b)fluoranthene	ug/L	ND	10.0	05/08/19 22:42	
Benzo(g,h,i)perylene	ug/L	ND	10.0	05/08/19 22:42	
Benzo(k)fluoranthene	ug/L	ND	10.0	05/08/19 22:42	
Chrysene	ug/L	ND	10.0	05/08/19 22:42	
Dibenz(a,h)anthracene	ug/L	ND	10.0	05/08/19 22:42	
Fluoranthene	ug/L	ND	10.0	05/08/19 22:42	
Fluorene	ug/L	ND	10.0	05/08/19 22:42	
Indeno(1,2,3-cd)pyrene	ug/L	ND	10.0	05/08/19 22:42	
Naphthalene	ug/L	ND	10.0	05/08/19 22:42	
Phenanthrene	ug/L	ND	10.0	05/08/19 22:42	
Pyrene	ug/L	ND	10.0	05/08/19 22:42	
2-Fluorobiphenyl (S)	%.	57	12-129	05/08/19 22:42	
Nitrobenzene-d5 (S)	%.	44	13-107	05/08/19 22:42	
p-Terphenyl-d14 (S)	%.	79	14-147	05/08/19 22:42	

LABORATORY CONTROL SAMPLE: 125938

		Snike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1-Methylnaphthalene	ug/L	80	45.0	56	30-135	
2-Methylnaphthalene	ug/L	80	44.6	56	36-114	
Acenaphthene	ug/L	80	53.8	67	37-138	
Acenaphthylene	ug/L	80	54.7	68	43-136	
Anthracene	ug/L	80	60.6	76	48-151	
Benzo(a)anthracene	ug/L	80	58.8	74	49-154	
Benzo(a)pyrene	ug/L	80	55.4	69	45-164	
Benzo(b)fluoranthene	ug/L	80	58.9	74	46-157	
Benzo(g,h,i)perylene	ug/L	80	61.6	77	50-161	
Benzo(k)fluoranthene	ug/L	80	51.9	65	48-158	
Chrysene	ug/L	80	57.8	72	49-155	
Dibenz(a,h)anthracene	ug/L	80	61.5	77	44-165	
Fluoranthene	ug/L	80	65.3	82	53-156	
Fluorene	ug/L	80	57.9	72	45-142	
Indeno(1,2,3-cd)pyrene	ug/L	80	61.8	77	43-171	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 825 Warner Street 19-064 Pace Project No.: 2618256

LABORATORY CONTROL SAMPLE: 125938

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Naphthalene	ug/L	80	40.9	51	35-106	
Phenanthrene	ug/L	80	59.5	74	49-146	
Pyrene	ug/L	80	56.4	70	50-146	
2-Fluorobiphenyl (S)	%.			63	12-129	
Nitrobenzene-d5 (S)	%.			48	13-107	
p-Terphenyl-d14 (S)	%.			76	14-147	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project:	825 Warner Street	19-064								
Pace Project No.:	2618256									
QC Batch:	28191		Analysis Meth	od:	Pace SOP #	[‡] 204				
QC Batch Method:	Pace SOP #204		Analysis Desc	Analysis Description: Dry Weight/Percent Moisture						
Associated Lab Sar	mples: 261825600	01, 2618256002, 2	2618256003, 26182	256008						
SAMPLE DUPLICA	TE: 127037									
			2618179001	Dup			Max			
Parar	neter	Units	Result	Result	RPI)	RPD		Qualifiers	
Percent Moisture		%	19.0	18	3.4	3		10		
SAMPLE DUPLICA	TE: 127038									
			2618256001	Dup			Max			
Parar	neter	Units	Result	Result	RPI)	RPD		Qualifiers	
Percent Moisture		%	12.5	12	2.8	3		10		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 825 Warner Street 19-064

Pace Project No.: 2618256

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

- IU The internal standard recoveries associated with this sample exceed the upper control limit. The reported results should be considered estimated values.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- M6 Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.
- MS Analyte recovery in the matrix spike was outside QC limits for one or more of the constituent analytes used in the calculated result.
- R1 RPD value was outside control limits.
- RS The RPD value in one of the constituent analytes was outside the control limits.
- v2 The continuing calibration verification was below the method acceptance limit. The analyte was not detected in the associated samples and the sensitivity of the instrument was verified with a reporting limit check standard.
- v3 The continuing calibration verification was below the method acceptance limit. Any detection for the analyte in the associated samples may have a low bias.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:825 Warner Street 19-064Pace Project No.:2618256

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
2618256002	B2-7-10'	EPA 3050B	28003	EPA 6010D	28027
2618256003	B3-2-3'	EPA 3050B	28003	EPA 6010D	28027
2618256008	B1-3-4'	EPA 3050B	28077	EPA 6010D	28111
2618256002	B2-7-10'	EPA 7471B	27845	EPA 7471B	28050
2618256003	B3-2-3'	EPA 7471B	27845	EPA 7471B	28050
2618256008	B1-3-4'	EPA 7471B	28248	EPA 7471B	28316
2618256001	B1-5-10'	EPA 3546	28310	EPA 8270D	28312
2618256002	B2-7-10'	EPA 3546	28011	EPA 8270D	28046
2618256005	B2	EPA 3510C	28008	EPA 8270D	28058
2618256006	B3	EPA 3510C	28008	EPA 8270D	28058
2618256001	B1-5-10'	EPA 5035	27955	EPA 8260B	27974
2618256002	B2-7-10'	EPA 5035	27955	EPA 8260B	27974
2618256004	B1	EPA 8260B	28174		
2618256005	B2	EPA 8260B	28174		
2618256006	B3	EPA 8260B	28174		
2618256007	Trip Blank	EPA 8260B	28174		
2618256001	B1-5-10'	Pace SOP #204	28191		
2618256002	B2-7-10'	Pace SOP #204	28191		
2618256003	B3-2-3'	Pace SOP #204	28191		
2618256008	B1-3-4'	Pace SOP #204	28191		

	 A socium hydroxide. (5) zinc acetate, (A) ascorbic acid. (B) ammonium sulfate, 	ab Profile/Line: Lab Sample Receipt Checklist: Lab Sample Receipt Checklist: Custody Seals Present Y N NA Custody Signatures Present Y N NA Collector Signature Present Y N NA Botlies Intadt Y N NA Sufficient Volume Y N NA Sufficient Volume Y N NA Samples Received on Ice Y N NA VOA Headspace Acceptable Y N NA VOA Headspace Acceptable Y N NA USDA Regulated Soils Samples in Holding Time Y N NA Samples in Holding Time Y N NA Clastips: Lab Sample # / Comments: Lab Sample # / Comments:	No. No. No. No. No. No. No. No. Lab Sample Temperature Info: No. Temp Blank Received: No. Therm 10#: Cooler 1 Temp Upon Receipt: Cooler 1 Them Corr. Factor: OC Lure Cooler 1 Them Corr. Factor: Lip Blank Received: No. Lip Blank Received: No. Lip Blank Received: No. Lip Blank Received: Yor Lip Blank Received: Yor
2618256	Preservative Types: (1) nitric acid, (2) sulfuric acid, (3) hydrochloric Preservative Types: (1) nitric acid, (2) sulfuric acid, (3) hydrochloric Si methanol, (7) acidium bisulfate, (8) sodium thiosulfate, (9) hexane, 10 ammonium hydroxide, (0) T5P, (U) Unpreserved, (0) Other	Vulves XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	SHORT HOLDS PRESENT (= 72 hours): V W N/A SHORT HOLDS PRESENT (= 72 hours): V W N/A Lab Tracking #: 2378867 Samples received via: FEDEX UPS (Client) Courtier Pace Cou MTJL LAB USE ON Date/Time: Date/Time: Table #: Date/Time: Template: Prelogin:
dy is a LEGAL DOCUMENT - Complete all relevent fields Billing Information:	Email De tr i O MIND RIVIS ar 16	A State: Country/City, I Time Edite Collected: I PT I J TT I J	P.V-TY I.V.Y. None Type of ice Used: Weet Blue Dry Packing Material Used: Methods Signature) Packing Material Used: Methods None Packing Material Used: Methods None
Company: Chain-of-Custod Company: ETPL	REPORT TO TON HANNER REPORT TO TON HANNER REPORT TO TON HANNER	Customer Profect Name/Number Area 19-06 Phone: 706 86 81 Site/Facility ID #: Email: Ar-100 Month Site/Facility ID #: Email: Ar-100 Month Site/Facility ID #: Email: Ar-100 Month Site/Facility ID #: Collected By (sighat/re): Durnaround Date Requir Town Archive: Durnaround Date Requir Sapple Disposal I Rush: Collected By (sighat/re): Dispose as apply of the transmerse of the transmer	Customer Remarks / Special Conditions / Possible Hazards: Relingues fred by/Company (Signature) Date

Sa	mple Condition	Upon Rec	WO# : ;	2618256
Pace Analytical Client Name	ETR	E	PM: SMM CLIENT: ET	Due Date: 05/14/19
Courier: Fed Ex UPS USPS Clie Tracking #:	ent Commercial	Pace Other	<u> </u>	Optional Proj. Due Date:
Custody Seal on Cooler/Box Present: Uses	no Seals	intact: 🗌 yes	🗌 no	Fioj. Name.
Packing Material: Bubble Wrap	e Bags 🗌 None	Other		- A
Thermometer Used 082	Type of Ice: (Wet	Blue None	Samples	on ice, cooling process has begun
Cooler Temperature 2.0° Temp should be above freezing to 6° C	Biological Tissue	is Frozen: Yes Comments:	No Date cor	and Initials of person examining ntents:///////////////////////////////
Chain of Custody Present:	ATTes DNO DN/A	1.		
Chain of Custody Filled Out:	Yes No N/A	2.		
Chain of Custody Relinquished:	Hes No N/A	3.		
Sampler Name & Signature on COC:	Pres No N/A	4.		
Samples Arrived within Hold Time:	Øyes □No □N/A	5.		
Short Hold Time Analysis (<72hr):	Yes No N/A	6.		
Rush Turn Around Time Requested:	□Yes □No □N/A	7.		
Sufficient Volume:	Yes No N/A	8.		
Correct Containers Used:		9.		
-Pace Containers Used:				- 54
Containers Intact:	Ves DNO DN/A	10.		
Filtered volume received for Dissolved tests		11.		
Sample Labels match COC:		12.		
-Includes date/time/ID/Analysis Matrix: All containers needing preservation have been checked.	SD/W	12		
All containers needing preservation are found to be in compliance with EPA recommendation.		15.		
exceptions VOA coliform, TOC, O&G, WI-DRO (water)	Yes No	Initial when completed	Lot # of a preserva	added tive
Samples checked for dechlorination:	Yes No DNA	14.		
Headspace in VOA Vials (>6mm):	Ves INO DNA	15.		
Trip Blank Present:	EYes No N/A	16.) rip Bi	andn	lot disted on the
Trip Blank Custody Seals Present	Pres No N/A	COC:		
Pace Trip Blank Lot # (if purchased):				
Client Notification/ Resolution: Person Contacted: Comments/ Resolution: <u>6N P 56</u> ; Not 1:5 tel On COC	Container	label el	Field Dat	a Required? Y I N -4'is present but
Project Manager Review:			D	Pate:

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

ANALYTICAL ENVIRONMENTAL SERVICES, INC.

May 24, 2019

Tom Harper ETRI 4780 Ashford Dunwoody, Suite A-456

Atlanta GA 30338

RE: 825 Warner Street

Dear Tom Harper:

Analytical Environmental Services, Inc. received for the analyses presented in following report.

Order No: 1905I13 5/17/2019 12:50:00 PM

No problems were encountered during the analyses. Additionally, all results for the associated Quality Control samples were within EPA and/or AES established limits. Any discrepancies associated with the analyses contained herein will be noted and submitted in the form of a project Case Narrative. AES's accreditations are as follows:

1

samples on

-NELAP/State of Florida Laboratory ID E87582 for analysis of Non-Potable Water, Solid & Chemical Materials, Air & Emissions Volatile Organics, and Drinking Water Microbiology & Metals, effective 07/01/18-06/30/19.

State of Georgia, Department of Natural Resources ID #800 for analysis of Drinking Water Metals, effective 07/01/18-06/30/19 and Total Coliforms/ E. coli, effective 04/25/17-04/24/20.

-AIHA-LAP, LLC Laboratory ID: 100671 for Industrial Hygiene samples (Metals and PCM Asbestos), Environmental Lead (Paint, Soil, Dust Wipes, Air), and Environmental Microbiology (Fungal) Direct Examination, effective until 11/01/19.

These results relate only to the items tested as received. This report may only be reproduced in full.

If you have any questions regarding these test results, please feel free to call.

Sincerely,

Kararic

Mirzeta Kararic Project Manager
ANALYTICAL ENVIRONMENTAL SERVICES, INC.					CHAIN OF CUSTODY					Work Order:	905		
AES Phone: (770) 457-8177 / Toll-Free: (800) 97	2-4889 / Fax: (770) 457-8	188								Date:	<u>5-16-9</u> Page /	of	
OMPANY: ETRE	ADDRESS: H780 Hshford Minisondy Ad Most H56 Ad 30338				ANALYSIS REQUESTED						Visit our website www.aesatlanta.com for downloadable COCs and to		
IONE: -120-888-8181 MPLED BY: Toma Har al	SIGNATURE:	und	pring.as		TD							log in to your AESACC	of Contains
# SAMPLE ID	SAMPLED:	MAB T	POSITE	AI RIX codes)	The second secon		PRESER	VATION (see codes)				Number
	DATE TIME	6	COM	(see								REMARKS	
BZ-7-10'	5/7/19 0930	> X	5	0	×			<u> </u>					
										+			
_										+			
)													
2								_					
1													
	RECEIVED BY:		DATE/TIME:		PROJECT N	AME:	PROJE	CT INFO	MATION			RECEIPT	
Monus K. R 7/16/15	ill baranc	SI	2/19 17:9	so pr	V25 PROJECT #	Wi	where	t	Viet	۲		Turnaround Time (TAT)	Request
	3.				SITE ADDR	ESS: 5 (L) DRT TO:	Jarn	erS	free	+Ar	Harks	2 Business Day Rush	ush
		VIA: VIA:	U		INVOICE TO) (IF DIFFEF	RENT FROM A	ABOVE):			<u></u>	Other STATE PROGRAM (if any):	
	client FedEx U other:	PS US ma	il courier	QUOTE #: PO#:									
Submission of samples to the laboratory constitutes acceptance of A business day. If no TAT	ES's Terms & Conditions. Client a is marked on COC, AES will proce = Soil SW = Surface Water ST	ssumes sole ed with stan =Stormwate	responsibility for dard TAT. Samp r WW = Waste	or damage oles are dis e Water	or loss of sa posed of 30 W = Wate	amples befo) days after • (Blanks)	ore we accep completion DW = Drink	t them. S of report	amples rec unless oth r (Blanks)	eived afte er arrange O = Othe	r 3PM or on Sati ments are made er (specify)	urday are considered as received 2.	the following

Analytical En	vironme	ntal Services, Inc						Date:	24-May-19	
Client:	ETRI					Client Sa	mple ID:	B2-7-10'		
Project Name:	825 Warn	er Street				Collectio	n Date:	5/7/2019	9:30:00 AM	
Lab ID:	1905113-	001				Matrix:		Soil		
Analyses			Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed	Analyst
SPLP (1312) M	ETALS	SW1312/6010D				(S)	W3010A)			
Lead			0.168	0.0100		mg/L	279560) 1	05/23/2019 14:44	AJ

Qualifiers:

* Value exceeds maximum contaminant level

BRL Below reporting limit

- H Holding times for preparation or analysis exceeded
- N Analyte not NELAC certified
- B Analyte detected in the associated method blank
- > Greater than Result value

- E Estimated (value above quantitation range)
- S Spike Recovery outside limits due to matrix
- Narr See case narrative
- NC Not confirmed
- < Less than Result value
- J Estimated value detected below Reporting Limit

1. Client Name: ETRI				AES Work Order Number:	1905 13	
2. Carrier: FedEx UPS USPS Client Courier Othe			_			_
	Yes	No	N/A	Details	Comments	
3. Shipping container/cooler received in good condition?	\mathbf{O}	$ $ \bigcirc	0	damaged eaking other		
4. Custody seals present on shipping container?	Ŏ	Õ	Ŏ			
5. Custody seals intact on shipping container?	Ŏ	Ŏ	Ō			
6. Temperature blanks present?	Ŏ	Õ	Ō			
Cooler temperature(s) within limits of 0-6°C? [See item 13 and 14 for 7. temperature recordings.]	Ο	0	0	Cooling initiated for recently collected samples / ice		
8. Chain of Custody (COC) present?	\bigcirc	O	0			
9. Chain of Custody signed, dated, and timed when relinquished and received?	Õ	Ŏ	Ŏ			
10. Sampler name and/or signature on COC?	Õ	Ŏ	Ŏ			
11. Were all samples received within holding time?	Ŏ	Ŏ	Ŏ			
12. TAT marked on the COC?	Õ	Ŏ	Ŏ	If no TAT indicated, proceeded with standard TAT per Ter	ms & Conditions.	
13. Cooler 1 Temperature 0.8 °C Cooler 2 Temperature 14. Cooler 5 Temperature °C Cooler 6 Temperature 15. Comments: 15. Comments: 15. Comments:			°C °C	Cooler 3 Temperature°CCoolerCooler 7 Temperature°CCooler	4 Temperature°C 8 Temperature°C	
						MI 5/17/19
				I certify that I have con	ipleted sections 1-15 (dated initials).	
	Yes	No	N/A	Details	Comments	
16. Were sample containers intact upon receipt?	\odot	\mathbf{O}	Q			
17. Custody seals present on sample containers?	\mathbf{O}	\mathbf{O}	O			
18. Custody seals intact on sample containers?	0	0	$\mathbf{\Theta}$			
19. Do sample container labels match the COC?	\odot	0	0	incomplete info illegible no label other		
20. Are analyses requested indicated on the COC?	\odot	O	\mathbf{O}			
21. Were all of the samples listed on the COC received?	\odot	0	0	samples received but not listed on COC		
22. Was the sample collection date/time noted?	\mathbf{O}		0			
23. Did we receive sufficient sample volume for indicated analyses?	\mathbf{O}	0	O			
24. Were samples received in appropriate containers?	\mathbf{O}	0	0			
25. Were VOA samples received without headspace (< 1/4" bubble)?	Ο	0	\mathbf{O}			
26. Were trip blanks submitted?	\circ	0	\mathbf{O}	listed on COC 🗌 not listed on COC 🗌		
27. Comments:						
This section only applies to samples where pH can be				I certify that I have con	npleted sections 16-27 (dated initials).	MJ 5/17/19
	Yes	No	N/A	Details	Comments	
28. Have containers needing chemical preservation been checked? *	Q	Q	\mathbf{O}			
29. Containers meet preservation guidelines?	Q	O	$ \bigcirc$			
30. Was pH adjusted at Sample Receipt?	\circ	O	\mathbf{O}			
* Note: Certain analyses require chemical preservation but must be check	ed in th	e labora	atory ar	nd not upon Sample Receipt such as Coliforms, VOCs ar I certify that I have con	nd Oil & Grease/TPH. npleted sections 28-30 (dated initials).	MJ 5/17/19

Clear

Client:ETRIProject Name:825 Warner StreetWorkorder:1905113

ANALYTICAL QC SUMMARY REPORT

BatchID: 279560

Sample ID: MB-279560	Client ID:				Uni	its: mg/L	Pre	p Date: ()5/23/2019	Run No: 398862
SampleType: MBLK	TestCode:	SPLP (1312) METALS	SW1312/6010D		Bat	chID: 279560	Ana	alysis Date: ()5/23/2019	Seq No: 8940202
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref V	/al %RPD	RPD Limit Qual
Lead	BRL	0.0100								
Sample ID: LCS-279560	Client ID:				Uni	ts: mg/L	Pre	p Date: (5/23/2019	Run No: 398862
SampleType: LCS	TestCode:	SPLP (1312) METALS	SW1312/6010D		Bat	chID: 279560	An	alysis Date: ()5/23/2019	Seq No: 8940207
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref V	/al %RPD	RPD Limit Qual
Lead	1.033	0.0100	1.000		103	80	120			
Sample ID: 1905I13-001AMS	Client ID:	B2-7-10'			Uni	its: mg/L	Pre	p Date: (5/23/2019	Run No: 398862
SampleType: MS	TestCode:	SPLP (1312) METALS	SW1312/6010D		Bat	chID: 279560	An	alysis Date: ()5/23/2019	Seq No: 8940210
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref V	/al %RPD	RPD Limit Qual
Lead	1.162	0.0100	1.000	0.1682	99.4	75	125			
Sample ID: 1905I13-001AMSD	Client ID:	B2-7-10'			Uni	ts: mg/L	Pre	p Date: (5/23/2019	Run No: 398862
SampleType: MSD	TestCode:	SPLP (1312) METALS	SW1312/6010D		Bat	chID: 279560	An	alysis Date: ()5/23/2019	Seq No: 8940212
Analyte	Result	RPT Limit	SPK value	SPK Ref Val	%REC	Low Limit	High Limit	RPD Ref V	/al %RPD	RPD Limit Qual
Lead	1.238	0.0100	1.000	0.1682	107	75	125	1.162	6.34	20

Qualifiers: > Greater than Result value

BRL Below reporting limit

J Estimated value detected below Reporting Limit

Rpt Lim Reporting Limit

< Less than Result value

E Estimated (value above quantitation range)

N Analyte not NELAC certified

S Spike Recovery outside limits due to matrix

- B Analyte detected in the associated method blank
- H Holding times for preparation or analysis exceeded
- R RPD outside limits due to matrix

Appendix C –Georgia EPD – Prospective Purchaser and Property Qualifying Criteria Form

	GEORG	IA BROW	NFIELD	S EI	IGIBI	LITY FOF	RM	
Х	CLOSING DATE FOR REAL ESTATE TRANSACTION (provide date, if known) July 10, 2019							
Х	A \$3,000 APPLICATION F NATURAL RESOURCES	EE IN THE FOR	M OF A CHE	CK PAY	ABLE TO	THE GEORGIA	DEPARTMENT OF	
Х	X A COPY OF THE WARRANTY DEED FOR THE SUBJECT PROPERTY, OR, IF NOT AVAILABLE, OTHER DOCUMENTS GIVING THE PROPERTY'S LEGAL DESCRIPTION AND/OR A COPY OF A TAX PLAT OR OTHER FIGURE SHOWING PROPERTY BOUNDARIES							
Х	X TWO (2) PAPER COPIES AND TWO (2) COMPACT DISC (CD) COPIES OF THE PROSPECTIVE PURCHASER COMPLIANCE STATUS REPORT (PPCSR) OR PROSPECTIVE PURCHASER CORRECTIVE ACTION PLAN (PPCAP) IN A SEARCHABLE PORTABLE DOCUMENT FORMAT (PDF)							
	Р	ROSPECTIVE	E PURCHA	SER I	NFORM	ATION		
NAME Ms. Connie Veates				Т	ITLE Co Of	-Executive Dire ficer	ctor and Chief Operating	
COMPANY	(if applicable) Trees /	Atlanta						
ADDRESS	225 Chester Avenue	, SE, Atlanta, Ge	eorgia 30316					
PHONE	(404) 681-4905	FAX			E-MAIL	. connie@tre	esatlanta.org	
	TECHNICAL CO	ONTACT PER	SON (CON	ISULI	TANT, CO	ONTRACTO	R, ETC.)	
NAME	Thomas R. Harper			Т	TTLE Tech	nical Director		
COMPANY	Environmental Tech	nology Resource	s, Inc.					
ADDRESS	4780 Ashford Dunwo	oody Road, Suite	A-456, Atlan	ta, Geo	rgia 30338			
PHONE	(770) 888-8181	FAX (77	0) 888-8188		E-MAIL	. etri@minds	pring.com	
		ADDITIO	NAL CONT	ГАСТ	PERSON	1		
NAME				Т	ITLE			
COMPANY								
ADDRESS								
PHONE		FAX			E-MAIL			
		PROF	PERTY INF	ORMA	TION			
PROPERTY	STREET ADDRESS	825 Warner St	treet, SW					
CITY Atlanta			COUNTY	Fultor	ו		ZIP CODE 30310	
TAX PARCEL NUMBER(s) PROPERTY NAME (if applicable) 14 010600090070 825 Warner Street							e)	
SIZE IN AC	RES 2.9	LATITUDE	33º 43' 29.3	4" Nort	h	LONGITUD	E -84° 24' 52.23" West	

DI EASE CHECK ALL OF THE FOLLOWING THAT								
Currently on Site (includes tanks that were closed in place)								
Removed Provide date of "	No further action" letter							
Landfills or buried debris (past or present)								
		32						
HSRA Release Notification Provide date Notification was filed								
Dete of New Visiting Letter (If explicable)								
OR	bie),							
Listing Date	and HSI Site Number							
PROSPECTIVE PURCHAS	SER AND PROPERTY QUALIFYING CRITERIA							
Prospective Purchaser								
Lam not a person who has contributed or is contribu	uting to a release at the property, or a relative by blood with	in the third degree of						
consanguinity or by marriage, an employee, shareho or any person who has contributed to a release at the	Ider, officer, or agent; or otherwise affiliated with the current of property.	owner of the property						
The purchasing compartian or other local optity is pu	at a surgest or former subsidiant, division, parent company, or	norther: or employer						
or former employer; or otherwise affiliated with the ca property.	urrent owner of the property or any person who has contribute	ed to a release at the						
I certify that I am not in violation of any order, judgment, statute, rule, or regulation subject to the enforcement of the Director								
Property								
This property has a pre-existing release.								
This property is not listed on the National Priorities List pursuant to the federal Comprehensive Environmental Response, Compensation, and Liability Act.								
This property is not currently undergoing response a	ctivities as required by an order of the federal Environmental F	Protection Agency.						
This property is not a hazardous waste facility as defined by Georgia Code Section 12-8-62.								
I certify under penalty of law that this document and	d all attachments were prepared under my direction or supe	rvision in accordance						
with a system designed to assure that qualified pe	ersonnel properly gather and evaluate the information subm	itted. Based on my						
information submitted is, to the best of my knowledge	ge and belief, true, accurate, and complete. I am aware that	t there are significant						
penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.								
Connie Veates Courie Veates 6-18-19								
Prospective Purchaser's Name (Print) Prospective Purchaser's Signature Date								